Mr. Wall,
Hmmm… getting this data is proving a little more tricky than I thought it was going to be. I am running two instances of Emon.
I was going to check the execution time simply by timestamping Emon1 when it is called in the main sketch and then get the other timestamp when it exits Emon1.
The issue is with Emon.h’s ‘numberOfSamples’ which I think is what we want to print out to see how many samples were taken. It is not a global variable. So if I try to print it out through the main sketch I get the “not declared” error.
What is the recommended approach to retrieve this value? Do I print it out under the main sketch? This would seem necessary to my way of thinking.
There is this in the EmonLib.cpp code:
void EnergyMonitor::serialprint()
But was not sure how to call it from main code block.
From Emon.h
unsigned int crossCount = 0; //Used to measure number of times threshold is crossed.
unsigned int numberOfSamples = 0; //This is now incremented
Emon.h code:
```cpp
#include "EmonLib.h"
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
//--------------------------------------------------------------------------------------
// Sets the pins to be used for voltage and current sensors
//--------------------------------------------------------------------------------------
void EnergyMonitor::voltage(unsigned int _inPinV, double _VCAL, double _PHASECAL) {
inPinV = _inPinV;
VCAL = _VCAL;
PHASECAL = _PHASECAL;
offsetV = ADC_COUNTS >> 1;
}
void EnergyMonitor::current(unsigned int _inPinI, double _ICAL) {
inPinI = _inPinI;
ICAL = _ICAL;
offsetI = ADC_COUNTS >> 1;
}
//--------------------------------------------------------------------------------------
// Sets the pins to be used for voltage and current sensors based on emontx pin map
//--------------------------------------------------------------------------------------
void EnergyMonitor::voltageTX(double _VCAL, double _PHASECAL) {
inPinV = 2;
VCAL = _VCAL;
PHASECAL = _PHASECAL;
offsetV = ADC_COUNTS >> 1;
}
void EnergyMonitor::currentTX(unsigned int _channel, double _ICAL) {
if (_channel == 1) inPinI = 3;
if (_channel == 2) inPinI = 0;
if (_channel == 3) inPinI = 1;
ICAL = _ICAL;
offsetI = ADC_COUNTS >> 1;
}
//--------------------------------------------------------------------------------------
// emon_calc procedure
// Calculates realPower,apparentPower,powerFactor,Vrms,Irms,kWh increment
// From a sample window of the mains AC voltage and current.
// The Sample window length is defined by the number of half wavelengths or crossings we choose to measure.
//--------------------------------------------------------------------------------------
void EnergyMonitor::calcVI(unsigned int crossings, unsigned int timeout) {
#if defined emonTxV3
int SupplyVoltage = 3300;
#else
int SupplyVoltage = readVcc();
#endif
unsigned int crossCount = 0; //Used to measure number of times threshold is crossed.
unsigned int numberOfSamples = 0; //This is now incremented
//-------------------------------------------------------------------------------------------------------------------------
// 1) Waits for the waveform to be close to 'zero' (mid-scale adc) part in sin curve.
//-------------------------------------------------------------------------------------------------------------------------
unsigned long start = millis(); //millis()-start makes sure it doesnt get stuck in the loop if there is an error.
while (1) //the while loop...
{
startV = analogRead(inPinV); //using the voltage waveform
if ((startV < (ADC_COUNTS * 0.55)) && (startV > (ADC_COUNTS * 0.45))) break; //check its within range
if ((millis() - start) > timeout) break;
}
//-------------------------------------------------------------------------------------------------------------------------
// 2) Main measurement loop
//-------------------------------------------------------------------------------------------------------------------------
start = millis();
while ((crossCount < crossings) && ((millis() - start) < timeout)) {
numberOfSamples++; //Count number of times looped.
lastFilteredV = filteredV; //Used for delay/phase compensation
//-----------------------------------------------------------------------------
// A) Read in raw voltage and current samples
//-----------------------------------------------------------------------------
sampleV = analogRead(inPinV); //Read in raw voltage signal
sampleI = analogRead(inPinI); //Read in raw current signal
//-----------------------------------------------------------------------------
// B) Apply digital low pass filters to extract the 2.5 V or 1.65 V dc offset,
// then subtract this - signal is now centred on 0 counts.
//-----------------------------------------------------------------------------
offsetV = offsetV + ((sampleV - offsetV) / ADC_COUNTS);
filteredV = sampleV - offsetV;
offsetI = offsetI + ((sampleI - offsetI) / ADC_COUNTS);
filteredI = sampleI - offsetI;
//-----------------------------------------------------------------------------
// C) Root-mean-square method voltage
//-----------------------------------------------------------------------------
sqV = filteredV * filteredV; //1) square voltage values
sumV += sqV; //2) sum
//-----------------------------------------------------------------------------
// D) Root-mean-square method current
//-----------------------------------------------------------------------------
sqI = filteredI * filteredI; //1) square current values
sumI += sqI; //2) sum
//-----------------------------------------------------------------------------
// E) Phase calibration
//-----------------------------------------------------------------------------
phaseShiftedV = lastFilteredV + PHASECAL * (filteredV - lastFilteredV);
//-----------------------------------------------------------------------------
// F) Instantaneous power calc
//-----------------------------------------------------------------------------
instP = phaseShiftedV * filteredI; //Instantaneous Power
sumP += instP; //Sum
//-----------------------------------------------------------------------------
// G) Find the number of times the voltage has crossed the initial voltage
// - every 2 crosses we will have sampled 1 wavelength
// - so this method allows us to sample an integer number of half wavelengths which increases accuracy
//-----------------------------------------------------------------------------
lastVCross = checkVCross;
if (sampleV > startV) checkVCross = true;
else checkVCross = false;
if (numberOfSamples == 1) lastVCross = checkVCross;
if (lastVCross != checkVCross) crossCount++;
}
//-------------------------------------------------------------------------------------------------------------------------
// 3) Post loop calculations
//-------------------------------------------------------------------------------------------------------------------------
//Calculation of the root of the mean of the voltage and current squared (rms)
//Calibration coefficients applied.
double V_RATIO = VCAL * ((SupplyVoltage / 1000.0) / (ADC_COUNTS));
Vrms = V_RATIO * sqrt(sumV / numberOfSamples);
double I_RATIO = ICAL * ((SupplyVoltage / 1000.0) / (ADC_COUNTS));
Irms = I_RATIO * sqrt(sumI / numberOfSamples);
//Calculation power values
realPower = V_RATIO * I_RATIO * sumP / numberOfSamples;
apparentPower = Vrms * Irms;
powerFactor = realPower / apparentPower;
//Reset accumulators
sumV = 0;
sumI = 0;
sumP = 0;
//--------------------------------------------------------------------------------------
}
//--------------------------------------------------------------------------------------
double EnergyMonitor::calcIrms(unsigned int Number_of_Samples) {
#if defined emonTxV3
int SupplyVoltage = 3300;
#else
int SupplyVoltage = readVcc();
#endif
for (unsigned int n = 0; n < Number_of_Samples; n++) {
sampleI = analogRead(inPinI);
// Digital low pass filter extracts the 2.5 V or 1.65 V dc offset,
// then subtract this - signal is now centered on 0 counts.
offsetI = (offsetI + (sampleI - offsetI) / ADC_COUNTS);
filteredI = sampleI - offsetI;
// Root-mean-square method current
// 1) square current values
sqI = filteredI * filteredI;
// 2) sum
sumI += sqI;
}
double I_RATIO = ICAL * ((SupplyVoltage / 1000.0) / (ADC_COUNTS));
Irms = I_RATIO * sqrt(sumI / Number_of_Samples);
//Reset accumulators
sumI = 0;
//--------------------------------------------------------------------------------------
return Irms;
}
void EnergyMonitor::serialprint() {
Serial.print(realPower);
Serial.print(' ');
Serial.print(apparentPower);
Serial.print(' ');
Serial.print(Vrms);
Serial.print(' ');
Serial.print(Irms);
Serial.print(' ');
Serial.print(powerFactor);
Serial.println(' ');
delay(100);
}
//thanks to http://hacking.majenko.co.uk/making-accurate-adc-readings-on-arduino
//and Jérôme who alerted us to http://provideyourown.com/2012/secret-arduino-voltmeter-measure-battery-voltage/
long EnergyMonitor::readVcc() {
long result;
//not used on emonTx V3 - as Vcc is always 3.3V - eliminates bandgap error and need for calibration http://harizanov.com/2013/09/thoughts-on-avr-adc-accuracy/
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__)
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB1286__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
ADCSRB &= ~_BV(MUX5); // Without this the function always returns -1 on the ATmega2560 http://openenergymonitor.org/emon/node/2253#comment-11432
#elif defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0);
#elif defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = _BV(MUX3) | _BV(MUX2);
#endif
#if defined(__AVR__)
delay(2); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Convert
while (bit_is_set(ADCSRA, ADSC))
;
result = ADCL;
result |= ADCH << 8;
result = READVCC_CALIBRATION_CONST / result; //1100mV*1024 ADC steps http://openenergymonitor.org/emon/node/1186
return result;
#elif defined(__arm__)
return (3300); //Arduino Due
#else
return (3300); //Guess that other un-supported architectures will be running a 3.3V!
#endif
}
EmonLib.cpp code:
/*
Emon.cpp - Library for openenergymonitor
Created by Trystan Lea, April 27 2010
GNU GPL
modified to use up to 12 bits ADC resolution (ex. Arduino Due)
by boredman@boredomprojects.net 26.12.2013
Low Pass filter for offset removal replaces HP filter 1/1/2015 - RW
Proboscide99 10/08/2016 - Added ADMUX settings for ATmega1284 e 1284P (644 / 644P also, but not tested) in readVcc function
Updated for ESP32 (2020)
*/
#include "EmonLib.h"
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
//--------------------------------------------------------------------------------------
// Sets the pins to be used for voltage and current sensors
//--------------------------------------------------------------------------------------
void EnergyMonitor::voltage(unsigned int _inPinV, double _VCAL, double _PHASECAL) {
inPinV = _inPinV;
VCAL = _VCAL;
PHASECAL = _PHASECAL;
offsetV = ADC_COUNTS >> 1;
}
void EnergyMonitor::current(unsigned int _inPinI, double _ICAL) {
inPinI = _inPinI;
ICAL = _ICAL;
offsetI = ADC_COUNTS >> 1;
}
//--------------------------------------------------------------------------------------
// Sets the pins to be used for voltage and current sensors based on emontx pin map
//--------------------------------------------------------------------------------------
void EnergyMonitor::voltageTX(double _VCAL, double _PHASECAL) {
inPinV = 2;
VCAL = _VCAL;
PHASECAL = _PHASECAL;
offsetV = ADC_COUNTS >> 1;
}
void EnergyMonitor::currentTX(unsigned int _channel, double _ICAL) {
if (_channel == 1) inPinI = 3;
if (_channel == 2) inPinI = 0;
if (_channel == 3) inPinI = 1;
ICAL = _ICAL;
offsetI = ADC_COUNTS >> 1;
}
//--------------------------------------------------------------------------------------
// emon_calc procedure
// Calculates realPower,apparentPower,powerFactor,Vrms,Irms,kWh increment
// From a sample window of the mains AC voltage and current.
// The Sample window length is defined by the number of half wavelengths or crossings we choose to measure.
//--------------------------------------------------------------------------------------
void EnergyMonitor::calcVI(unsigned int crossings, unsigned int timeout) {
#if defined emonTxV3
int SupplyVoltage = 3300;
#else
int SupplyVoltage = readVcc();
#endif
unsigned int crossCount = 0; //Used to measure number of times threshold is crossed.
unsigned int numberOfSamples = 0; //This is now incremented
//-------------------------------------------------------------------------------------------------------------------------
// 1) Waits for the waveform to be close to 'zero' (mid-scale adc) part in sin curve.
//-------------------------------------------------------------------------------------------------------------------------
unsigned long start = millis(); //millis()-start makes sure it doesnt get stuck in the loop if there is an error.
while (1) //the while loop...
{
startV = analogRead(inPinV); //using the voltage waveform
if ((startV < (ADC_COUNTS * 0.55)) && (startV > (ADC_COUNTS * 0.45))) break; //check its within range
if ((millis() - start) > timeout) break;
}
//-------------------------------------------------------------------------------------------------------------------------
// 2) Main measurement loop
//-------------------------------------------------------------------------------------------------------------------------
start = millis();
while ((crossCount < crossings) && ((millis() - start) < timeout)) {
numberOfSamples++; //Count number of times looped.
lastFilteredV = filteredV; //Used for delay/phase compensation
//-----------------------------------------------------------------------------
// A) Read in raw voltage and current samples
//-----------------------------------------------------------------------------
sampleV = analogRead(inPinV); //Read in raw voltage signal
sampleI = analogRead(inPinI); //Read in raw current signal
//-----------------------------------------------------------------------------
// B) Apply digital low pass filters to extract the 2.5 V or 1.65 V dc offset,
// then subtract this - signal is now centred on 0 counts.
//-----------------------------------------------------------------------------
offsetV = offsetV + ((sampleV - offsetV) / ADC_COUNTS);
filteredV = sampleV - offsetV;
offsetI = offsetI + ((sampleI - offsetI) / ADC_COUNTS);
filteredI = sampleI - offsetI;
//-----------------------------------------------------------------------------
// C) Root-mean-square method voltage
//-----------------------------------------------------------------------------
sqV = filteredV * filteredV; //1) square voltage values
sumV += sqV; //2) sum
//-----------------------------------------------------------------------------
// D) Root-mean-square method current
//-----------------------------------------------------------------------------
sqI = filteredI * filteredI; //1) square current values
sumI += sqI; //2) sum
//-----------------------------------------------------------------------------
// E) Phase calibration
//-----------------------------------------------------------------------------
phaseShiftedV = lastFilteredV + PHASECAL * (filteredV - lastFilteredV);
//-----------------------------------------------------------------------------
// F) Instantaneous power calc
//-----------------------------------------------------------------------------
instP = phaseShiftedV * filteredI; //Instantaneous Power
sumP += instP; //Sum
//-----------------------------------------------------------------------------
// G) Find the number of times the voltage has crossed the initial voltage
// - every 2 crosses we will have sampled 1 wavelength
// - so this method allows us to sample an integer number of half wavelengths which increases accuracy
//-----------------------------------------------------------------------------
lastVCross = checkVCross;
if (sampleV > startV) checkVCross = true;
else checkVCross = false;
if (numberOfSamples == 1) lastVCross = checkVCross;
if (lastVCross != checkVCross) crossCount++;
}
//-------------------------------------------------------------------------------------------------------------------------
// 3) Post loop calculations
//-------------------------------------------------------------------------------------------------------------------------
//Calculation of the root of the mean of the voltage and current squared (rms)
//Calibration coefficients applied.
double V_RATIO = VCAL * ((SupplyVoltage / 1000.0) / (ADC_COUNTS));
Vrms = V_RATIO * sqrt(sumV / numberOfSamples);
double I_RATIO = ICAL * ((SupplyVoltage / 1000.0) / (ADC_COUNTS));
Irms = I_RATIO * sqrt(sumI / numberOfSamples);
//Calculation power values
realPower = V_RATIO * I_RATIO * sumP / numberOfSamples;
apparentPower = Vrms * Irms;
powerFactor = realPower / apparentPower;
//Reset accumulators
sumV = 0;
sumI = 0;
sumP = 0;
//--------------------------------------------------------------------------------------
}
//--------------------------------------------------------------------------------------
double EnergyMonitor::calcIrms(unsigned int Number_of_Samples) {
#if defined emonTxV3
int SupplyVoltage = 3300;
#else
int SupplyVoltage = readVcc();
#endif
for (unsigned int n = 0; n < Number_of_Samples; n++) {
sampleI = analogRead(inPinI);
// Digital low pass filter extracts the 2.5 V or 1.65 V dc offset,
// then subtract this - signal is now centered on 0 counts.
offsetI = (offsetI + (sampleI - offsetI) / ADC_COUNTS);
filteredI = sampleI - offsetI;
// Root-mean-square method current
// 1) square current values
sqI = filteredI * filteredI;
// 2) sum
sumI += sqI;
}
double I_RATIO = ICAL * ((SupplyVoltage / 1000.0) / (ADC_COUNTS));
Irms = I_RATIO * sqrt(sumI / Number_of_Samples);
//Reset accumulators
sumI = 0;
//--------------------------------------------------------------------------------------
return Irms;
}
void EnergyMonitor::serialprint() {
Serial.print(realPower);
Serial.print(' ');
Serial.print(apparentPower);
Serial.print(' ');
Serial.print(Vrms);
Serial.print(' ');
Serial.print(Irms);
Serial.print(' ');
Serial.print(powerFactor);
Serial.println(' ');
delay(100);
}
//thanks to http://hacking.majenko.co.uk/making-accurate-adc-readings-on-arduino
//and Jérôme who alerted us to http://provideyourown.com/2012/secret-arduino-voltmeter-measure-battery-voltage/
long EnergyMonitor::readVcc() {
long result;
//not used on emonTx V3 - as Vcc is always 3.3V - eliminates bandgap error and need for calibration http://harizanov.com/2013/09/thoughts-on-avr-adc-accuracy/
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__)
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB1286__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
ADCSRB &= ~_BV(MUX5); // Without this the function always returns -1 on the ATmega2560 http://openenergymonitor.org/emon/node/2253#comment-11432
#elif defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0);
#elif defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = _BV(MUX3) | _BV(MUX2);
#endif
#if defined(__AVR__)
delay(2); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Convert
while (bit_is_set(ADCSRA, ADSC))
;
result = ADCL;
result |= ADCH << 8;
result = READVCC_CALIBRATION_CONST / result; //1100mV*1024 ADC steps http://openenergymonitor.org/emon/node/1186
return result;
#elif defined(__arm__)
return (3300); //Arduino Due
#else
return (3300); //Guess that other un-supported architectures will be running a 3.3V!
#endif
}