
#***

Phil's Home Automation *

#***

Program: Import / Export Power calculator for OpenEVSE using DSMRv5 P1 data *

#***

Version log: *

---*

Version 0.1 Beta: First operational version run on laptop *

#--*

*

#***

Program Language : Python 3.8.10 *

Other programs and modules used: *

Eclipse Paho MQTT version 1.6.1 *

---*

External Connections: *

toke/mosquitto MQTT broker "latest" 2018 - docker version on Synology DS220+ *

OpenEVSE 7.1.3.EU with WiFi 4.1.0 *

Smart Gateways DSMRv5 Wifi with MQTT firmware 2022022001 *

Smart Utility Meter DSMRv5 Sagemcom S211 built 2020, installed Sep 2020 *

serial 253770234 *

#***

Description: *

The objective is to reduce the running cost of the BEV by using only *

excess solar power to charge the car so that grid import and export is *

reduced. This is achieved by throttling the EV charge current so that grid *

export is near zero and stop charging if grid current needs to be imported *

for charging. *

The OpenEVSE charger can be set in the "Eco" mode for solar PV divert. *

The input it uses for that is "+I/-E", one number that indicates power import*

when positive and power export when negative. The unit of measure is Watt. *

The input can be received over WiFi as MQTT packets. *

Our house has a smart utility meter following the DSMRv5 standard. *

The meter can be read by a small device from the Dutch company "Smart *

Gateways" that can be plugged in the P1 port of the smart meter. The little *

is powered through the P1 port and sends the data to a MQTT broker. *

The MQTT broker here is a DS220+ Synology NAS running toke/mosquitto in *

Docker. The data available is not in the required "+I/-E" format. The purpose*

of this Python program is to transform the available data into the required *

input for the OpenEVSE. To subscribe to MQTT topics and publish the desired *

for use by the OpenEVSE, paho/MQTT from Eclipse is run on a laptop. The *

result is published to the MQTT broker and the OpenEVSE subscribes to that *

result. *

*

Beta testing shows the code works as intended. But there is a challenge with *

the EV. Whenever the charger stops charging, it cannot resume charging when *

power is available again. Within one minute of stopping the charge, the car *

goes to sleep and ignores the pilot signal from the charger until the car is *

"woken up" by e.g. opening and closing the doors. *

This still needs to be addressed. *

#***

#----------- Module Imports --

from paho.mqtt import client as mqtt

import time

#----------- End Module Imports --

First we need to define the callback function we need to call to decode the messages

we are getting back from the broker when they are received.

Messages are not necessarily sent from the broker at the time the program is run.

So the way this works is the broker sends a message we subscribed to and it gets

stored in a buffer in our client. Whenever a new message arrives in the buffer,

the client.on_message callback is triggered. For our program to be able to process that

message, it needs to be running. That is why we need to use the client.loop to keep

looping, i.e. waiting for the on_message callback to be triggered.

When the callback is activated, the loop will trigger the function we define below.

Once the function is defined, we then need to associate the callback with this

callback function.

#----------- Function Definitions Begin --

We define the read_power_topic function that is later associated with the on_message

callback. Every time a topic message is received from the broker, this function will run.

def read_power_topic(client, userdata, message):

 # We subscribed to "dsmr/reading/electricity_currently_delivered", the power taken from the grid

 # and "dsmr/reading/electricity_currently_returned", the excess power exported to the grid.

 # Only one of the subscribed topics will be returned at any time this function is run.

 # The power data we receive from dsmr is always zero or a positive number.

 # When the dsmr returns 0.0 for a power variable, it means no power is flowing in that direction

 # so we can ignore it.

 # power1 is what we need to publish for OpenEVSE use. It is initialized to zero, so that is

 # the result if nothing goes. With 0.0 in power1, OpenEVSE will hold charge current at the

 # level it had before when in "eco" mode.

 power1 = 0.0

 # We look what topic was returned and store that in power1 if the returned variable is not 0.0.

 # power1 needs to be positive if power is imported and negative if (solar) power is exported.

 # Also dsmr UOM for power is kW, while OpenEVSE requires W. So we need to multiply the dsmr power

 # by 1000.0. That is what the OpenEVSE requires for proper solar divert to work properly.

 power = float(str(message.payload.decode("utf-8")))

 if power > 0.0:

 if str(message.topic) == "dsmr/reading/electricity_currently_delivered":

 power1 = power * 1000.0

 elif str(message.topic) == "dsmr/reading/electricity_currently_returned":

 power1 = power * (-1000.0)

 # If the dsmr power topic returned is zero, there is no power flow in the direction associated

 # with the power topic being processed. So then we do not publish power1.

 # Next time around we will get the power for the other direction and publish that if it is not 0.0.

 # OpenEVSE needs a power1 update every 10 seconds. The Smart Gateway publishes every 10 seconds,

 # so this function runs for both power directions every 10 seconds because it is invoked by the

 # broker publishing to the client, which triggers this callback function.

 # So every 10 seconds we can calculate a new power1 value to publish.

 # power1 is fit for use as the (+I/-E) value for the OpenEVSE solar divert.

 if power > 0.0:

 print("power1 = " + str(power1))

 client.publish("DS220/POWER1", str(power1))

 print("---------")

#----------- Function Definitions End --

We connect to the broker as Client with name DS220.

DS220 stands for the Synology NAS where this program ultimately runs.

The broker also runs on the NAS and has IP address 192.168.1.99.

mqttBroker ="192.168.1.99"

client = mqtt.Client("DS220")

client.connect(mqttBroker)

We subscribe to the dsmr topics we need. The dsmr\ topics come from the Smart Gateway connected

to the P1 port of the smart meter.

We always get the topic messages from the broker one by one. Not in a list. So no need to complicate things

with multiple topic subscriptions. We simply subscribe for each topic individually.

client.subscribe("dsmr/reading/electricity_currently_delivered")

client.subscribe("dsmr/reading/electricity_currently_returned")

As soon as the subscribe method is executed, a separate thread is started that listens

for messages to come back from the broker. That is what the mqtt.client package does.

When the broker sends out a subscribed topic to the DS220 client, the client receives

that message and stores it in a buffer. We need to run the callback function to get to

the stored message in the buffer and process the message so we can use the data contained

in the message in our program.

This is what we do here: the callback on_message is triggered when a new message arrives

in the buffer. We associate the on_message callback with the function that is defined

with the def statement in the beginning of the code. That function will be invoked by

the on_message callback and receive the information contained in the message, so we can

decode that message for use in the program.

client.on_message = read_power_topic

On each message returned, the on_message callback is run.

This means that when the dsmr/reading/electricity_currently_delivered is returned

the on_message function is run. And when the electricity_currently_returned is

returned soon after, the on_message callback is run again.

Every 10 seconds the two messages come back in sequence from the dsmr Smart Gateways client.

So we need to sit tight and wait for them to come in with this loop.

In this first test we run the loop for a short time so it quits automatically.

client.loop_start()

time.sleep(40000)

client.loop_stop()

End of program

