
EmonLibCM

This Continuous Monitoring library provides a means of using advanced features of the
Atmel ATMega328P microprocessor to give a way to measure voltage, current and power
on a single-phase electricity supply. The physical quantities are measured continuously,
the average values are calculated and made available to the host sketch at user-defined
intervals.

The library incorporates temperature monitoring using the DS18B20 sensor and pulse
counting.

This document has the following main sections:

Key Properties – important points about this library

Using EmonLibCM – a very brief explanation of how to use this library

Application interface – power and energy (including pulse counting)
Application interface – temperature monitoring

List of required supporting libraries

Initial configuration

Calibration notes

Example Sketches

Alphabetical index of Application Interface functions

Key Properties

• Continuous monitoring of one voltage channel and up to 5 current channels.
• Gives an accurate measure of rapidly varying loads.
• Better than 1900 sample sets per second – using 4 channels of an emonTx V3.4 @

50 Hz
• Calculates rms voltage, rms current, real & apparent power & power factor.
• Accumulates Wh.
• Pulse inputs (2) for supply meter monitoring.
• Integrated temperature measurement (up to 6 DS18B20 sensors).
• User-defined reporting interval.
• Suitable for operation on a single phase supply at 50 or 60 Hz.
• Can be calibrated for any voltage and current up to a maximum of 32 kVA per input.

(Default calibration is for emonTx with 100 A CT & UK a.c. adapter).
• Includes functions to enable on-line recalibration.

Using EmonLibCM

You will need a sketch that globally
1. Includes the emonLibCM library and any others that might be needed.
2. Declares & defines arrays to receive temperature data (if temperature sensors are

being used).
In setup()

1. Sets up any parameters where the default value is not suitable.
2. Initialises emonLibCM.

and in loop()
1. Checks that the library has ‘logged’ the data, then
2. Extracts, prints or forwards the data to wherever it is needed.

Setting parameters and options.
All settings are made with a “setter” function. For example, the default voltage channel is
AI 0, and the calibration is set for the emonTx V3.4. To set this for the emonTx V2, using AI
2 and the nominal calibration for that, you must use:

EmonLibCM_SetADC_VChannel(2, 227.59);
A list of all available setter functions, and a description of what they do, follows in the
Application Interface sections.

Extracting the data.
The function

EmonLibCM_Ready();
must be called very frequently inside loop(). If no new data is ready, this returns
immediately with the value false. If however new data is ready, it returns the value true
and you may then use the “getter” functions to retrieve the data. For example, to retrieve
the real power measured on logical channel 0 (normally CT1) and assign the value to the
floating point variable power1, you would use:

power1 = EmonLibCM_getRealPower(0);

A list of all available getter functions, and a description of what they do, follows in the
Application Interface sections.
Example sketches are available: one shows the minimum sketch needed, and a second
illustrates the use of every function available (even though in most cases the default value
is set again, by way of illustration).

EmonLibCM Application Interface

Power & Energy

void EmonLibCM_SetADC_VChannel(byte ADC_Input, double _amplitudeCal)
void EmonLibCM_SetADC_IChannel(byte ADC_Input, double _amplitudeCal,

double _phaseCal)
Sets the physical channels used for the inputs. The first sets the input pin and amplitude
calibration constant for the voltage input, the second sets the input pin, amplitude
calibration constant and phase error compensation for the current inputs.

Generally, ALL the input channels that will be used must be fully defined. Current inputs
not in use should not be defined, and omitting unused inputs will improve the sample rate
of the remaining channels. Note that if NO ADC channels are defined, then one voltage
and 4 current input channels will be set, and all inputs will use the default values.

In any set of measurements, the voltage channel is always the first to be read. Thereafter,
the current inputs are read in the sequence in which they are defined in the sketch. This
sequence becomes the logical order used thereafter. For example, if (in the case of the
emonTx V3) the input labelled CT3 [= ADC Input 3] on the pcb legend is the first current
channel to be defined, it will be accessed as channel 0.

Voltage amplitude calibration constant: This is the unitless ratio of mains voltage to the
alternating component of the voltage at the ADC input, and will depend on the voltage
divider ratio and the a.c. adapter (transformer) used. Default: 268.97

Current amplitude calibration constant: This is the ratio of mains current to the alternating
component of the voltage at the ADC input. Default: 90.9 for all channels except logical
channel 3: 16.6 and provided that the default channel sequence is unaltered. The unit is
the Siemens (1 / Ω).

Phase error compensation: This is the phase lead of the voltage transformer minus the
phase lead of the current transformer, in degrees. (It will be negative if the c.t. leads the
v.t.). The defaults and the approximate values for the combination of Ideal/TDC UK
adapter & YHDC SCT-013-000 on a 240 V 50 Hz supply for the emonTx channels 1-3 is
4.2°, and for channel 4 it is 1.0° at maximum current. (Hint: use steps of 0.2° or larger if
setting by trial & error.)

The physical channels must be set before the library is initialised with EmonLibCM_Init().
To adjust the calibration while the library is running, use the functions below.

There is no return value.

void EmonLibCM_ReCalibrate_VChannel(double _amplitudeCal)
void EmonLibCM_ReCalibrate_IChannel(byte ADC_Input, double _amplitudeCal,

double _phaseCal)
The first resets the amplitude calibration constant for the voltage input, the second resets
the amplitude calibration constant and phase error compensation for the related current

input. These are intended for calibrating the sketch whilst it is running. They must only be
called after the library had been initialised with EmonLibCM_Init().

The parameters are the same as for EmonLibCM_SetADC_VChannel(…) and
EmonLibCM_SetADC_IChannel(…) above, there is no return value.

void EmonLibCM_setPulsePin([byte channel,] int _pin [, int _interrupt])
Sets the active pull-up on the I/O pin on which the interrupt pulse is accepted. The channel
number (zero-based) defines the interrupt handler to be used, and is only needed if more
than one interrupt channel is available. The interrupt number associated with that pin is
optional (but deprecated) and should only be specified if it is not the default for that pin,
when the channel must also be specified. (Active pull-up is required to prevent spurious
triggering.) The pulse input is active low: if a volt-free contact is used, it must be connected
between the pulse input pin and GND. The pulse is recognised on the rising edge (i.e. the
opening of mechanical contacts). If a voltage source is used, it must be capable of
overriding the input pull-up. Defaults: pin = 3, interrupt = 1.

Note: The 2-parameter version EmonLibCM_setPulsePin(byte|int) can conflict with a
similar definition in previous releases.

void EmonLibCM_setPulseMinPeriod([byte channel,] int _period,
byte _edge=FALLING)

Sets the minimum period of time that the pulse must be active to be recognised, in ms.
This should be longer than the contact bounce time expected of a mechanical switch
contact, but shorter than the duration of the pulse. (Note: this differs from the definition in
previous releases, and if the period is specified, its value should be reviewed.) For
electronic switches that do not exhibit contact bounce, zero may be used. The channel
number (zero-based) defines the interrupt handler to be used, and is only needed if more
than one interrupt channel is available. The edge on which the pulse is detected may be
specified if required. Default: period = 20.

Note: To avoid ambiguity, it might be necessary to cast channel and _edge to type byte,
especially if a literal or a symbolic constant (“1”, FALLING or RISING) is used.

void EmonLibCM_setPulseEnable([byte channel,] bool _enable)
Enables pulse counting. Pulse counting is initialised when the library is initialised, and
thereafter may be turned on or off as required. The change is applied at the next
datalogging. The pulse count is frozen whilst pulse counting is disabled. The channel
number (zero-based) defines the interrupt handler to be used, and is only needed if more
than one interrupt channel is available. Default: enable = false.

void EmonLibCM_setPulseCount([byte channel,] unsigned long _count)
Initialises the pulse count. This will normally be used at start-up to restore a value saved
prior to a supply interruption or reset; although it may be used to synchronise the value
with another meter. The previous value is overwritten. Default: 0.

void EmonLibCM_setADC(int _ADCBits, int _ADCDuration)
Sets the ADC resolution (bits) and informs the library of the time taken for the conversion
(µs). For an emonTx V3, the values are 10 and 104 respectively. There is no return value.
Defaults: ADCBits = 10, ADCDuration = 104

void EmonLibCM_ADCCal(double _Vref)
Sets the ADC reference voltage used by the library as part of the calibration process,
nominally 3.3 V for the emonTx and 5 V for an Arduino. If the precise voltage is known,
that value can be used. There is no return value. Default: 3.3

void EmonLibCM_setADC_VRef(byte _ADCRef)
Sets the reference to be used by the ADC. There are 3 permissible values:
 VREF_EXTERNAL – an externally supplied voltage
 VREF_NORMAL – the processor supply (AVCC)
 VREF_INTERNAL – the internal 1.1V reference
There is no return value. Default: VREF_NORMAL
WARNING: Setting this parameter incorrectly might damage your processor.
Do not set this unless your hardware is suitable.
Refer to the Atmel Atmega328P data sheet for further details.
The emonTx, emonPi and Arduino MUST use ONLY the default value, i.e. no others.
Note: You must still set the ADC calibration with EmonLibCM_ADCCal() if the default is
not appropriate.

void EmonLibCM_setAssumedVrms(double _assumedVrms)
Sets the nominal mains voltage, used to calculate power and energy when no a.c. voltage
is detected.

void EmonLibCM_cycles_per_second(unsigned int _cycles_per_second)
Sets the nominal mains frequency, used to calculate the actual mains frequency and
phase error compensation. There is no return value. Default: 50.

void EmonLibCM_min_startup_cycles(unsigned int _min_startup_cycles)
Sets the number of complete mains cycles to be ignored before recording starts. There is
no return value. Default: 10

void EmonLibCM_datalog_period(float _datalog_period_in_seconds)
Sets the interval (seconds) over which the power, voltage and current values are averaged
and reported. There is no return value. The minimum is 0.1 s, it has not been tested above
5 minutes (300 s). Note that this may be called after the library had been initialised with
EmonLibCM_Init() so that the datalogging period can be changed whilst the sketch is
running. Note also that emoncms.org will not accept data faster than once every 10 s.
Default: 10

void EmonLibCM_setWattHour(byte channel, long _wh)
Sets the value of the Watt-hour (energy) counter. There is no return value. 'channel' is the
logical current channel (zero-based) according to the order in which the current input
channels were defined by multiple instances of the statement
EmonLibCM_SetADC_IChannel (not the physical channel defined by the pcb legend). This

will normally be used at start-up to restore a value saved prior to a supply interruption or
reset; although it may be used to synchronise the value with another meter. The previous
value is overwritten. Default: 0

double EmonLibCM_getVrms(void)
Returns the decimal value of the rms average voltage in volts over the reporting period.

double EmonLibCM_getAssumedVrms(void)
Returns the decimal value of the nominal rms average voltage in volts.

double EmonLibCM_getLineFrequency(void)
Returns the decimal value of the average power line frequency over the reporting period.
The value is liable to jitter when the reporting period is very short (less than 1 s). If an a.c.
voltage is not detected, zero is returned.

int EmonLibCM_getLogicalChannel(byte ADC_Input)
Returns the logical current channel (zero-based) given the physical input as defined by the
processor. The return value is meaningless if the voltage input or an unused physical ADC
input is given. This can be used to convert the physical input number to the logical current
channel required by the following functions.

double EmonLibCM_getIrms(int channel)
Returns the decimal value of the rms average current in amperes over the reporting period
for that channel. 'channel' is the logical current channel (zero-based) according to the
order in which the current input channels were defined by multiple instances of the
statement EmonLibCM_SetADC_IChannel (not the physical channel defined by the pcb
legend).

int EmonLibCM_getRealPower(int channel)
Returns the nearest integer value of the average real power in watts over the reporting
period for that channel. 'channel' is the logical current channel (zero-based) according to
the order in which the current input channels were defined by multiple instances of the
statement EmonLibCM_SetADC_IChannel (not the physical channel defined by the pcb
legend). If an a.c. voltage is not detected, this will return the apparent power using the
current and the assumed nominal voltage.

int EmonLibCM_getApparentPower(int channel)
Returns the nearest integer value of the average apparent power in volt-amperes over the
reporting period for that channel. 'channel' is the logical current channel (zero-based)
according to the order in which the current input channels were defined by multiple
instances of the statement EmonLibCM_SetADC_IChannel (not the physical channel
defined by the pcb legend). If an a.c. voltage is not detected, this will return the apparent
power using the current and the assumed nominal voltage.

double EmonLibCM_getPF(int channel)
Returns the decimal value of the average power factor over the reporting period for that
channel. 'channel' is the logical current channel (zero-based) according to the order in

which the current input channels were defined by multiple instances of the statement
EmonLibCM_SetADC_IChannel (not the physical channel defined by the pcb legend). If an
a.c. voltage is not detected, zero is returned.

double EmonLibCM_getDatalog_period()
Returns the decimal value of the interval (seconds) over which the energy, power, voltage,
current, etc, values are reported.

unsigned long EmonLibCM_getPulseCount(byte channel)
Returns the accumulated count of pulses on that channel since the library was initialised,
for the period that pulse counting has been enabled. Channel is only needed if more than
one interrupt channel is available.

long EmonLibCM_getWattHour(int channel)
Returns the integer value of the accumulated energy in watt-hours since the library was
initialised, for that channel. 'channel' is the logical current channel (zero-based) according
to the order in which the current input channels were defined by multiple instances of the
statement EmonLibCM_SetADC_IChannel (not the physical channel defined by the pcb
legend). If an a.c. voltage is not detected, this will return the volt-ampere-hours using the
assumed nominal voltage.

EmonLibCM_Init()
Initialise the library. This function must be called once only, and then only after all other
set-up functions have been called, typically it will be the last line of setup(). It assigns all
the set-up and calibration constants to the appropriate internal variables and starts the
ADC in free-running mode. There is no return value.

bool EmonLibCM_Ready()
Returns true when a new result is available following the end of the reporting period, else
returns false. Typically, it will be used in loop() to control a conditional branch that includes
the 'get' functions that extract the required values. It must be called every time that loop()
executes to ensure correct operation.

bool EmonLibCM_acPresent()
Returns true when the a.c. voltage has been detected (greater than approx. 10% of the
nominal input). If the a.c. voltage sensor is not being used, then only current
measurements are valid; the real and apparent power, energy and power factor values are
meaningless.

Integrity Check
(For debugging or as a performance check only)

int EmonLibCM_minSampleSetsDuringThisMainsCycle()
Returns the lowest number of sample sets per mains cycle recorded during the last data
logging period. The value should be 192 (50 Hz system) or 160 (60 Hz system) divided by
2 for 1 CT in use, 3 for 2 CTs in use, etc; but will depend on the exact mains frequency at
the time.
The value 999 is returned if no mains is detected.
To make this function available, you must add the line

#define INTEGRITY

both at the top of your sketch and at the top of the library .cpp file.

EmonLibCM Application Interface
Temperature Monitoring
Temperature measurement parameters are set up prior to calling
EmonLibCM_TemperatureEnable, which enables temperature measurements
(‘conversion’). The conversion, which can take up to 750 ms depending on the
measurement resolution demanded, is triggered so that the measurement result is
available to be retrieved the next time that data is logged. The resolution and datalogging
periods must be chosen so that there is adequate time for conversion to take place.
Depending on the number of sensors, temperature reporting is not reliable, and the
resolution is reduced to 9 bits, with a datalogging period of less than 1 s, and not permitted
with a datalogging period of less than 0.2 s. The measurements can be accessed in the
form required, either as integers (× 100) or as decimals. The theoretical maximum number
of sensors is 127, the practical maximum is much less.
Temperature measurement can be enabled and disabled as necessary, but only the
sensor addresses may be changed after the library has been initialised.

Note that problems might be experienced unless only DS18B20 sensors conforming to the
Maxim specification are used.

EmonLibCM_setTemperatureDataPin(byte _dataPin)
Sets the pin on which the OneWire temperature data is received. There is no return value.

EmonLibCM_setTemperaturePowerPin(char _powerPin)
Sets the pin that turns on power to the sensors (-1 = no pin is turned on). Setting this to a
valid (i.e. non-negative) value turns on power to the powerPin for the minimum time to
enable the temperatures to be read and reported, and minimises self-heating. This is
available on the emonTx V3.4 only when the sensors are connected via the terminal block.
There is no return value.

EmonLibCM_setTemperatureResolution(byte _resolution)
Sets the resolution of the measurement, permissible values are 9, 10, 11 & 12 (bits),
corresponding to ½, ¼, ⅛ & ¹⁄16 °C respectively. The default is 11, resolution will be set to
9 bits if the datalog_period_in_seconds is less than 1 second. There is no return value.

EmonLibCM_setTemperatureMaxCount(int _maxCount)
Sets a limit to the number of sensors that will be initialised. The order in which sensors are
discovered is outside the scope of this document and is explained elsewhere. If the
number of sensors detected is greater than maxCount, some sensors will not be used,
their addresses will not be stored and they should be disconnected. There is no return
value.

EmonLibCM_setTemperatureAddresses(DeviceAddress *addressArray [, bool keep])
Sets the array of sensor addresses. The array must be created in the sketch and must be
large enough to accept at least maxCount addresses. See
EmonLibCM_TemperatureEnable() for how to use keep. There is no return value.

EmonLibCM_setTemperatureArray(int *temperatureArray)
Sets the array to save the retrieved temperatures. The array must be created in the sketch
and must be large enough to accept at least maxCount temperatures. There is no return
value.

EmonLibCM_TemperatureEnable(bool _enable)
Enables/disables temperature measurements using the DS18B20 sensor array.
Temperature measurement will not be enabled unless the array to receive the data has
been set using EmonLibCM_setTemperatureArray(). If necessary, the temperature
sensors’ addresses are discovered and recorded in the address array. The order in which
sensors are discovered is outside the scope of this document and is explained elsewhere.
The same measurement resolution is set in each sensor. Temperature measurement can
be enabled or disabled whilst the library is running (the change taking effect at the next
datalogging). Sensor addresses can be changed or sensors can be added, the change
taking effect the next time temperature measurements are enabled. No other settings may
be changed after the library has been initialised. If temperature measurement is disabled,
any call to EmonLibCM_getTemperature() or interrogation of the temperatures array
thereafter will return old or invalid data. There is no return value.

It is possible to pre-load the sensor addresses, for example from a hard-coded list
or from EEPROM. If setTemperatureAddresses() is used with keep set to true,
EmonLibCM_TemperatureEnable() will check that the first address is a DS18B20
sensor. If it is, it will assume that the array contains a list of valid addresses.
MaxCount should be set to a value not greater than the number of addresses in the
array. If the first sensor address is not valid, or keep is not present or is set to false,
then the sensors are discovered as described above.

Hint: The sensor addresses can be found by allowing this function to search for the
sensors, and including the printTemperatureSensorAddresses() function at the
end of setup() to show the addresses. Those addresses may then be copied into
the array.

bool EmonLibCM_getTemperatureEnabled(void)
Returns the state of temperature measurements.

int EmonLibCM_getTemperatureSensorCount(void)
If temperature measurement is enabled, returns the number of active temperature
sensors, otherwise zero.

void printTemperatureSensorAddresses(bool emonPi)
Prints to the serial port a report of the number of temperature sensors detected and their
addresses. Assumes the serial port is open. This is intended as a debugging tool and to
verify your sensor(s) can be detected, and should not be used in normal operation. Display
of your sensor’s serial number does not mean temperature reporting is enabled. You must
enable temperature reporting with EmonLibCM_TemperatureEnable(true); Setting
emonPi to true enables the special emonPi output format. There is no return value.

float EmonLibCM_getTemperature(char sensorNumber)
Returns the temperature in degrees Celsius as last recorded by the sensor at the
sensorNumber position in the array. SensorNumber is zero-based and must be less that
maxCount. If temperature measurement is disabled, or has only just been re-enabled, the
temperature reported might be the last value recorded prior to measurements being
disabled.

Error values:
300.00 : Sensor has never been detected since power-up/reset.
302.00 : Sensor returned an out-of-range value.
 304.00 : Faulty sensor, sensor broken or disconnected.
 85.00 : Although within the valid range, if it is not close to the expected value, this could
represent an error, and might indicate that the sensor has been powered but not
commanded to measure (‘convert’) the temperature. It might be a symptom of an
intermittent power supply to the sensor.

Getting the temperature as an integer.
To extract the temperature as an integer, e.g. to pack into the payload structure for the
RFM radio module, it is possible to access the temperatures array directly, because this is
declared in and so is available to the sketch. Viz:

emontx.temp1 = myTemperatureArray[0];

The value is the temperature × 100 as a signed integer. (e.g. ‘Faulty Sensor’ would be
30400)

REQUIRED LIBRARIES
These libraries are required to support emonLibCM:

JeeLib (JeeLabs - https://github.com/jcw/jeelib) or an equivalent
 if radio transmission is required.

Wire [Arduino standard library]

OneWire (Paul Stoffregen)

SPI [Arduino standard library]

CRC16 [Arduino standard library]

https://github.com/jcw/jeelib

INITIAL CONFIGURATION
The following settings should be checked and included in your sketch as necessary. The
default values – given in the Application Interface sections above – should be suitable in
most cases.

Set the correct I/O channels according to your hardware, using
EmonLibCM_SetADC_VChannel and an instance of EmonLibCM_SetADC_Ichannel
for each current input in use. For best performance, you should not include any current
channels that will not be used.

Set the interval at which you wish the values to be reported, using
EmonLibCM_datalog_period
For emoncms.org, this may not be less than the default value of 10 s. For emoncms
running on a private server, any value is permissible, provided that the remainder of the
system is compatible. For a local emonCMS running on an emonPi, a value of 9.85 s gives
good results. Short periods will give a large amount of data. The library has not been
tested below the minimum value of 0.1 s, nor with values greater than 300 s (5 mins).
Temperature reporting is not reliable with values less than 1 s.

If you are not in the 50 Hz world, set the mains frequency, using
EmonLibCM_cycles_per_second.

If you are not using an emonTx or emonPi, set the ADC resolution and conversion time,
using
EmonLibCM_setADC.

If you are not using an emonTx or emonPi, set the ADC reference voltage, using
EmonLibCM_ADCCal.

If you are not using the AVCC voltage reference for the ADC, set that using
EmonLibCM_setADC_Vref. (The emonTx, emonPi and Arduino MUST use ONLY the default
value, i.e. do not set this.)

If you are using temperature sensors:

Set the pins used for the data (and power connection if appropriate), using
EmonLibCM_setTemperatureDataPin and EmonLibCM_setTemperaturePowerPin
Define arrays to receive the sensor addresses and the temperatures.
Set the measurement resolution required using EmonLibCM_setTemperatureResolution

If you are using the pulse input:

Set the pin(s) used for the pulse sensor(s), using EmonLibCM_setPulsePin. Set the
debounce period using EmonLibCM_setPulseMinPeriod, and finally enable pulse
counting with EmonLibCM_setPulseEnable.

CALIBRATION
Before calibrating a sketch that uses this library, read (but do not do) the calibration
instructions in Resources > Building Block Resources. Those instructions contain the
general procedure and safety warnings, which you must be familiar with. The detailed
instructions that follow apply only to sketches using this library. The default values are
given in the description of each function above. Follow these instructions for the order in
which to make the adjustments and how to apply the values in the sketch, but follow the
general instructions for how to proceed with the measurements.

Check the ADC reference voltage. The correct nominal value (3.3 or 5.0) should be set
with EmonLibCM_ADCCal(Vref) so that the actual calibration coefficients will be closer to
the calculated values. If desired, set the actual precise measured value. It is not essential
to do this, as any discrepancy will be taken up by the individual voltage and current
calibration constants.

Set the voltage calibration constant for the voltage input circuit, using
EmonLibCM_SetADC_VChannel(byte ADC_Input, double _amplitudeCal)

Set the current calibration constant and the phase error compensation for the input circuit
of each channel that is in use, using
EmonLibCM_SetADC_IChannel(byte ADC_Input, double _amplitudeCal, double
_phaseCal)

Calibration is neither required nor possible for both the temperature sensors and the pulse
inputs.

Documentation V2.2.2 for EmonLibCM V2.2.2 - 15/9/2022

EXAMPLE SKETCHES
Three example sketches are provided.

EmonTxV34CM_min.ino

This is the absolute minimum sketch that is needed to use the library. As the comment at
the beginning of the sketch states, the sketch assumes that all the default values for the
emonTx V3.4 are applicable, that no input calibration is required, the mains frequency is
50 Hz and the data logging period interval is 10 s, pulse counting and temperature
monitoring are not required, and that 4 'standard' 100 A CTs and the UK a.c. adapter from
the OEM Shop are being used as the input sensors.

This should be your starting point for using the library. If you find that you need to adjust
any of the default settings, consult the Application Interface section and then copy the
appropriate function either from there or from the full sketch EmonTxV34CM_max.ino,
changing parameters as necessary.

EmonTxV34CM_max.ino

This provides an example of every Application Interface function. Many will be redundant
in normal circumstances as they simply set again the default parameters, many of which
are likely to be correct and will not need changing. If you do need to change a value, the
Application Interface section above gives full details.

EmonTxV34CM_min_RFM69.ino

This is the same as EmonTxV34CM_min.ino, except that it comes with a stripped-down
“transmit-only” module for the RFM69CW only, which replaces the full JeeLib, to illustrate
how to incorporate this into any sketch.

Alphabetical Index of Application Interface Functions

(Note: The function name has been abbreviated for clarity)

acPresent
ADCCal
cycles_per_second
datalog_period
getApparentPower
getAssumedVrms
getDatalog_period
getIrms
getLineFrequency
getLogicalChannel
getPF
getPulseCount
getRealPower
getTemperature
getTemperatureEnabled
getTemperatureSensorCount
getVrms
getWattHour
Init
Integrity Check
min_startup_cycles
minSampleSetsDuringThisMainsCycle
printTemperatureSensorAddresses
Ready
ReCalibrate_Vchannel
ReCalibrate_IChannel
SetADC_IChannel
SetADC_VChannel
setADC
setADC_VRef
setAssumedVrms
setPulseCount
setPulseEnable
setPulseMinPeriod
setPulsePin
setWattHour
setTemperatureAddresses
setTemperatureArray
setTemperatureDataPin
setTemperatureMaxCount
setTemperaturePowerPin
setTemperatureResolution
TemperatureEnable

	EmonLibCM
	Key Properties
	Using EmonLibCM
	EmonLibCM Application Interface
	Power & Energy

	EmonLibCM Application Interface
	Temperature Monitoring

	REQUIRED LIBRARIES
	INITIAL CONFIGURATION
	CALIBRATION
	EXAMPLE SKETCHES

