Energy Networks Association

Distributed Generation Connection Guide

A GUIDE FOR CONNECTING GENERATION TO THE DISTRIBUTION NETWORK IN MULTIPLE PREMISES THAT FALLS UNDER G83/2

June 2014
In the event that there is any conflict or contradiction between this Guide and the engineering standards and codes referenced in the Guide, the terms of the referenced documents will prevail. These include inter alia Engineering Recommendation G83/2, Engineering Recommendation G59/3, the Distribution Code, the Grid Code, the Connection and Use of System Code and the Balancing and Settlement Code.
The following pages contain a number of information sheets. These bring information that is contained throughout the Guide into a single page. The information sheets include:

- Decision Tree for the Distributed Generation Connection Guide—to help you to identify whether this is the right Guide for you.
- Capacity cut off points—a diagram illustrating the impacts that the generation capacity of your generating equipment has on the requirements and opportunities for your project.
- Provision of Information: DNO websites—a summary of the information you can expect to find on DNO websites.
- Legislative and Regulatory Document Hierarchy—an illustration of document hierarchy, and list of key documents.

You will find the Guide introduction and contents after these information sheets.
There are four separate Distributed Generation Connection Guides, each with a corresponding 'Summary' guide. The purpose of the summary guides is to act as a quick check, providing only the most useful information in a condensed format. This flowchart guides you to the most relevant Connection Guide for the Distributed Generation you are planning to install. The Guides can be found on the Distribution Generation section of the ENA website.

Size of your generating unit within any single premises
Does your generating unit (or the aggregation of generating units if there are more than one) have a capacity of 16A per phase or less, and is it connected at low voltage? In other words:
- Three phase—generation capacity of 11.04kW or smaller and connected at 400V
- Single Phase—generation capacity of 3.68kW or smaller and connected at 230V

Number of premises
In how many premises are you planning to install units:
- within 500m of each other; or
- with the same postcode (ignoring the final two letters)?

1. **More than 1**
 - Guide for EREC G83 projects on a Single Premises
 - Guide for EREC G83 projects on Multiple Premises
 - Guide for EREC G59 projects for simple installations of under 50kW capacity
 - Full Guide for EREC G59 Projects

 examples of distributed generation that is 16A per phase or less

 PV system: If you are installing solar panels on the roof of your home (or another similar building), it is likely that your project will be less than 16A per phase, particularly if your array is about 30m² or less; or about 18 panels or fewer.

 Wind: Many small scale wind turbines are also less than 16A per phase. For example:
 - QR5 turbine: Rated 6.5 kW with a rotating section of 5 m height
 - Bergey wind turbine: Rated 10.0 kW with a diameter of 7 m

 Combined Heat and Power (CHP): A micro-CHP plant rated 6 kW (3-phase) (the size of a big dishwasher 0.8 x 1 x 1m) could have a thermal output of 18 kW.
The tasks that you have to undertake to get connected vary with the capacity of the generating plant. In general, the bigger the generator, the more complex the connection requirements.

The table below illustrates some of the impacts that the capacity of your generating units have on the connection process and requirements on you.
Provision of Information: DNO Websites

There is a great deal of published information available from your DNO that can be helpful for your project planning. Some of the most useful sources are summarised here, and links to the DNO websites are in the table below.

Long Term Development Statement (LTDS)
Covers the development plans for the network, and other information useful for prospective developers. An introductory chapter is generally available on the DNO’s website and DNOs will give access to the full document on request. These documents are updated every six months, and published annually.

Connection Charging Documents
Statements and methodologies will be given for both connection charges and Use of System (UoS) charges. This information may be included in a single document, or in several, and are updated regularly. These are available on DNO websites.

Standards of Performance
Ofgem has set minimum performance standards for connections, both during and after their construction. If your DNO fails to meet these standards, you may be entitled to receive payment. The ENA has guidance documents about these Standards on their website: www.energynetworks.org/electricity/regulation/electricity-standards-of-performance.html

DG (Distributed Generation) Forums
Ofgem holds a series of regional events (“DG forums”) to explore issues and concerns around DG connections, including barriers to DG and process issues. DNOs have responded to these concerns in a number of ways, including:

- Providing a more detailed **breakdown of costs**;
- Making improvements to the **provision of information** (e.g. web portals and capacity “heat maps”, indicating areas that can more readily facilitate connections);
- Holding **stakeholder workshops** and **customer events** (e.g. some DNOs host “open surgeries” for Distributed Generation customers); and
- Utilising **new technologies and techniques** in connection offers.

The ENA has taken on running these forums on behalf of the DNOs.

<table>
<thead>
<tr>
<th>Region</th>
<th>DNO</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Scotland, Southern England</td>
<td>SSE Power Distribution</td>
<td>www.ssepd.co.uk</td>
</tr>
<tr>
<td>South Scotland, Cheshire, Merseyside and North Wales</td>
<td>SP Energy Networks</td>
<td>www.spenergynetworks.com</td>
</tr>
<tr>
<td>North East England</td>
<td>Northern Powergrid</td>
<td>www.northernpowergrid.com</td>
</tr>
<tr>
<td>North West</td>
<td>Electricity North West</td>
<td>www.enwl.co.uk</td>
</tr>
<tr>
<td>Yorkshire</td>
<td>Northern Powergrid</td>
<td>www.northernpowergrid.com</td>
</tr>
<tr>
<td>East Midlands, West Midlands, Southern Wales, South West England</td>
<td>Western Power Distribution</td>
<td>www.westernpower.co.uk</td>
</tr>
</tbody>
</table>
The following diagram shows the legislative and regulatory documents in the power sector. These are grouped by category, and where possible the relationship between documents is illustrated. The documents have been colour coded by document category. The most relevant examples of each documents are included in the boxes below.

ACTS OF PARLIAMENT

REGULATIONS

LICENCES

GOVERNMENT POLICY

TECHNICAL STANDARDS

CODES

AGREEMENTS AND STATEMENTS

RENEWABLE GENERATION INCENTIVES

PERFORMANCE STANDARDS

TARIFF REGULATION

KEY: Indicates where a document feeds into or influences another.

Document Category:

- Acts
- Regulations
- Licences
- Policy
- Agreements / Statements
- Code
- Standards
- Tariff regulation
- Renewable Energy Programmes

ACTS OF PARLIAMENT:
- Electricity Act 1989
- Utilities Act 2000
- Energy Act 2004 (BETTA go-live direction)
- Energy Act 2008 (FITs etc.)
- Energy Act 2010 (CCS incentive)

TECHNICAL STANDARDS
- Engineering Recommendations
- Security and Quality of Supply Standard (SQSS)

PERFORMANCE STANDARDS:
- Guaranteed standards and DG standards

TARIFF REGULATION:
- Ofgem Price Controls

REGULATIONS:
- Electricity Safety, Quality and Continuity Regulations 2002
- The Electricity (Applications for Licences, Modifications of an Area and Extensions and Restrictions of Licences) (No. 2) Regulations 2004
- Electricity Standards of Performance (Amendment) Regulations 2010

CODES
- Balancing and Settlement Code
- Connection and Use of System Code
- Grid Code
- System operator – Transmission owner Code (STC)
- Distribution Code

AGREEMENTS AND STATEMENTS
- Connection Agreements
- Charging Statements
- The Distribution Connection and Use of System Agreement
- Master Registration Agreement
- The Electricity Ten Year Statement

LICENCES:
- Generation
- Transmission
- Distribution
- Supply

GOVERNMENT POLICY:
- Energy White Paper 2007
- The UK Low Carbon Transition Plan 2009
- The UK Renewable Energy Strategy 2009

RENEWABLE GENERATION:
- FIT and ROC programmes
Who is this Guide for?
This Guide is intended to help you, as a developer or the prospective owner of Distributed Generation, to connect your generating unit to one of the UK’s electricity distribution networks. The types of generation that most frequently connect to the distribution networks include:

- renewable energy projects;
- waste to energy projects; and
- on-site generation and Combined Heat and Power (CHP) projects.

What is the aim of the Guide?
The main aim of the Guide is to provide a ‘route map’ of the processes for getting a generation project connected to the distribution network. The Guide provides an overview of the connection process, as well as more details on the application stage.

The connection process involves discussions and agreements between you and your Distribution Network Operator (DNO). This process is more likely to be successful if you and the DNO can communicate effectively and understand each other’s concerns. So, in addition to its main aim of providing a ‘route map’ of the connection process, the Guide has a number of other aims:

- to provide background information about the UK power sector and the role Distributed Generation has to play;
- to describe the main factors affecting connection costs and ongoing charges;
- to highlight your options relating to your connection works, identify different contracts relating to your connection and discuss some day-to-day operational issues; and
- to describe the key financial incentive for Distributed Generation: Feed-in Tariffs (FITs).

What is not covered in the Guide?
In addition to arranging a connection to the network, you will also have other issues to address in order to get your project up and running. These include:

- Designing, installing and operating the generation installation
- Buying and selling electricity (beyond FITs)
- Planning the project
- Financing the project
- Resolving local planning issues

These issues are outside the scope of this Guide, but you will need to about these in parallel with the connection process.

The format of the Guide
This Guide has been written and formatted with you, the reader, in mind. In particular we think this Guide will be useful for customers with generation, installers and developers. We have tried to make this Guide as clear and easy to read as we can, bearing in mind that some of the issues discussed are technical and complex. In particular:

- Terms which may be unfamiliar are defined or explained in boxes around the main text.
- Key points and summaries are highlighted.
- Text is **emboldened** for emphasis.
Many of the codes and other documents described in this guide are subject to open governance whereby any interested and materially affected party can propose a change to the document. This includes the Connection and Use of System charging arrangements (for both distribution and transmission) and the Distribution and Grid Codes. For matters not under open governance there are also groups with Distributed Generation community and DNO representation where issues can be raised and discussed which may lead to changes being proposed.

The overarching group to discuss commercial and procedural issues associated with connection is the ENA DNO - DG Steering Group, and for technical issues the ENA DNO – DG Technical Forum. Any issues you have for these forums should be raised through trade associations who are representatives.
The process of connecting Distributed Generation to the electricity distribution network varies depending on the size of the generation to be connected, and the specific technology to be used. In general, the larger the generation capacity, the more complex the process.

There are two main Engineering Recommendations that cover the connection of Distributed Generation to the electrical distribution network: EREC G83 (for smaller generation capacities and specific generation technologies) and EREC G59 (for all other projects). These are described further in the information boxes below.

Four Guides have been developed:
- EREC G83 compliant units in a single premises;
- EREC G83 compliant units in multiple premises within a close geographic region;
- A simplified guide for EREC G59 compliant equipment with a capacity of 50kW or less, and which has been type tested; and
- A full guide for all EREC G59 installations.

A “summary” version of each Guide, containing the minimum, essential information from each chapter, is also available—refer to the ENA website.

Where you are installing multiple generating units, the application process (i.e. EREC G83 or G59) is based on the installed capacity of the power station as a whole, how many premises equipment will be installed on, and whether each unit is type tested.

If you are adding new generating units to an existing power station, then the total power station capacity should be used to determine the connection process of the new connection application, but only the new additional equipment needs to be type tested in line with the latest EREC documents.

Engineering Recommendation G83
ERECD G83 is called “Recommendations for the Connection of Type Tested Small-scale Embedded Generators (Up to 16 A per Phase) in Parallel with Low-Voltage Distribution Systems.” It sets out the requirements you must meet before your generating unit can be connected to the network. The document is aimed at the manufacturers and installers of your generating unit. EREC G83 is available on the Energy Network Association’s website for a fee of £90.00, but all of the Appendices with forms required for applications are available free of charge.

Engineering Recommendation G59
ERECD G59 is called “Recommendations for the Connection of Generating Plant to the Distribution Systems of Licensed Distribution Network Operators.” The purpose of the document is to provide guidance to you and to DNOs on all aspects of the connection process. EREC G59 is available on the Energy Network Association’s website for a fee of £125.00, but some Appendices are available free of charge.
Distributed Generation Connection Guide: Is this the right Guide for my project?

<table>
<thead>
<tr>
<th>Guide</th>
<th>Criteria</th>
<th>Distributed Generation is compliant with EREC G83 if:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A guide for connecting Distributed Generation that falls under EREC G83 in a single premises</td>
<td>Installation of one or more Distributed Generation units at a single premises.</td>
<td>- It meets the size definition of SSEG;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- It is installed in accordance with EREC G83. Your installer should be familiar with these requirements; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- It has been tested and approved according to the relevant Type Testing Annex in EREC G83.</td>
</tr>
<tr>
<td>A guide for connecting Distributed Generation that falls under EREC G83 in multiple premises</td>
<td>Installation of Distributed Generating units at more than one premises within a close geographic region.</td>
<td></td>
</tr>
<tr>
<td>A simplified guide for connecting Distributed Generation that falls under EREC G59 with a capacity of less than 50kW three-phase or 17kW single-phase</td>
<td>This Guide is written for installations where:</td>
<td>In addition, this Guide is aimed at generation projects where the connection requires only a minimum amount of network extension and makes use of the Feed-in Tariff (FITs) scheme (rather than Renewable Obligation Certificates or ROCs). For information on network extension and ROCs, refer to the full G59 Guide (below).</td>
</tr>
<tr>
<td></td>
<td>- the equipment is covered under G59;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- the generating capacity of the generating units is 50kW or less three phase, or 17kW or less single phase;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- the equipment to be installed is EREC G59 or G83 ‘Type Tested’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In addition, this Guide is aimed at generation projects where the connection requires only a minimum amount of network extension and makes use of the Feed-in Tariff (FITs) scheme (rather than Renewable Obligation Certificates or ROCs). For information on network extension and ROCs, refer to the full G59 Guide (below).</td>
<td></td>
</tr>
<tr>
<td>A full guide for connecting Distributed Generation that falls under EREC G59</td>
<td>This guide covers all projects that are covered by EREC G59. If a Distributed Generation project does not meet all of the criteria under EREC G83 then it is covered by EREC G59.*</td>
<td></td>
</tr>
</tbody>
</table>

*Connection of small scale embedded generation of above 16A per phase (including the connection of small scale embedded generation of less than 16A per phase where the aggregate capacity of installed generation is greater than 16A per phase) made before 1 December 2014 can be in accordance with either G59/2-1 or G59/3. Such connections made after 1 December 2014 must be made in accordance with G59/3.

Small-Scale Embedded Generation (SSEG)

SSEG is defined in EREC G83 as “A Generating Unit together with any associated interface equipment, if required (e.g. Inverter(s)) that can be used independently, rated up to and including 16A per phase, single or multi-phase 230/400V AC and designed to operate in parallel with a public low voltage Distribution System”. This corresponds to **3.68 kW on a single-phase supply and 11.04 kW on a three-phase supply**.

The requirements have been relaxed for small scale generation using Stirling engines. This is detailed in Guidance Note 3 in the Distribution Code, and valid until 31 December 2016. For more information see the latest version of the Distribution Code: www.dcode.org.uk
Inverters
An inverter is an electrical device that converts Direct Current (DC) to Alternating Current (AC). This is required when you want to connect a generating unit with a DC output (e.g. a Photovoltaic array) to the distribution network, which operates at AC.

The term Micro Inverter is used to describe small scale inverters which are connected to (multiple) small generating units, such as individual PV panels. This is often done so that if one panel is impaired for any reason, then the output of the others is not affected. As with any installation with more than one generating unit, the application process is dictated by the aggregate capacity of the power station as a whole and not the individual units.

Close Geographic Region
Typically, a Close Geographic Region is one which is fed by the same part of the distribution network, from a single feeder or distribution transformer. Your DNO will be able to advise you as to whether your installation sites are within a close geographic region. A general rule of thumb is that if your installations are within 500 meters of each other, or if the post codes are the same at least up until the last two letters, then they are likely to be within a close geographic region.

Type tested equipment
A type tested Small-Scale Embedded Generating unit is defined in EREC G83 as one that “has been tested by the Manufacturer, component manufacturer or supplier, or a third party, to ensure that the design meets the requirements of this Engineering Recommendation”. Type testing applies to the generating equipment or inverter which is connected directly to the electricity network. Using type tested equipment simplifies the connection and commissioning process.

The Engineering Recommendation annexes contain methodologies for testing equipment against a set of test conditions to demonstrate compliance with EREC G83. The manufacturer produces a Type Test Certificate to demonstrate compliance. The following generation types fall under EREC G83, as they have a type testing appendix:

- Domestic Combined Heat and Power (CHP)
- Photovoltaic (PV)
- Fuel Cells
- Hydro
- Wind
- Energy Storage Device

In the event that a new type testing annex is required, manufacturers and developers can ask the GB Distribution Code Review Panel (DCRP) to formally initiate it.

The Energy Networks Association (ENA) hosts an online Type Test Verification Report Register. This contains certificate and test documentation for generation products and enables product identification and information sharing. You can access the register at: www.ena-eng.org/ProductTypeTestRegister/
Distributed Generation Connection Guide: Contents

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: A Guide to the UK Power Sector</td>
</tr>
<tr>
<td>B: The Role of Distributed Generation</td>
</tr>
<tr>
<td>C: An Overview of Getting connected</td>
</tr>
</tbody>
</table>
| **D: The Connection Application**
 Connection Application Process
 Generation Licensing |
| **E: Costs and Charges**
 Connection Costs
 Ongoing Costs |
| **F: Selling electricity**
 Feed-in Tariffs
 Renewable Obligation Certificates |
| **G: Technical and Commercial Interfaces**
 Competition in Connections
 Contracts and Agreements
 Operational Issues |
| Glossary |
| References |
| Revisions |
A: A Guide to the UK Power Sector

In this section:
- An overview of the commercial structure of the power sector
- An introduction to the UK power sector and how it is changing
- A discussion about the various types of organisations that you may come across while developing your Distributed Generation project
- A discussion on Network Innovation projects
- Guidance on where to find more information

Tip: Read the information boxes for definitions or explanations of terms that may be new or unfamiliar.

Introduction

Understanding a little about the UK power sector may be useful when discussing your Distributed Generation project. This section aims to give some background explanation about the UK power sector and how it is changing to meet the challenges of protecting the environment and changing Government policy.

There are many organisations involved in the UK power sector, which are introduced in this section.

Apart from the physical structure of the power sector, there is also a commercial structure, which is discussed in this section.

The Commercial Structure of the Power Sector

The commercial structure of the electricity industry in Great Britain provides a competitive market in electricity retailing. This enables customers to contract with any one of a number of competing electricity suppliers. The sale of energy is also a competitive market. Note, your Feed-In Tariff level is an indication of the minimum you can expect to be paid for the electricity you generate.

Generators sell the electricity that they generate in the wholesale market or directly to suppliers. Suppliers sell the electricity they purchase to customers. The majority of trading occurs in advance of the time of use. The wholesale market is governed by British Electricity Trading Transmission Arrangements (BETTA), which was introduced in 2005.

If you install Distributed Generation you can use the electricity you produce on site to reduce the amount of electricity that you need to buy thus lowering your electricity bills. You can also sell electricity to customers, suppliers or, depending on the size of the generation, on the wholesale market. You can read more about power trade options in Section F. Selling Electricity.
The Physical Infrastructure of the Power Sector

Power Stations
Mostly large coal, gas and nuclear power stations.

Transmission System
Transports electricity over long distances across the country.
Electricity is transported at a high voltage to reduce losses.

Voltage Range: 275kV or 400kV. In Scotland, 132kV is also used.

Other Distribution Systems

Distribution System
Transports electricity from the Transmission System to loads like homes and businesses.
The voltage is reduced to the correct supply voltage for the loads.

Voltage Range: 132kV and lower in England and Wales, or lower than 132kV in Scotland. Most residential customers are supplied at 230V.

Loads

The distribution system carries the electricity to loads, such as homes and businesses.

The transmission and distribution systems are also called transmission and distribution networks. Both terms are used in this Guide.

This symbol represents a transformer. These are used throughout electricity networks to change voltage levels.

These arrows show the normal direction of the flow of electricity through the system.

In a traditional power system, electricity flows from large generation sites, through the transmission and distribution networks, to the loads.
The Physical Infrastructure of the Power Sector

Changing electricity system
In addition to the large power stations connected to the transmission system, an increasing number of small power stations are being developed, often connected to distribution networks. Generation connected to the distribution network is called Distributed Generation. The diagram below illustrates this changing electricity system.

Distributed Generation can result in electricity flows in both directions; from the distribution network to customers, and from customers with Distributed Generation back into the distribution network. The system is no longer a “waterfall” system, with electricity flowing from the large power stations in one direction towards customers. Instead, electricity flows are more unpredictable.

Distributed Generation (DG or ‘Embedded Generation’)
A generation project is classed as Distributed Generation if it operates while electrically connected to the distribution network. Energy generated from Distributed Generation may be used onsite, or some or all of it may be exported to the distribution network.

Power Stations
A mix of energy sources, including renewable and conventional sources.

Transmission System
The direction of electricity flow becomes more dynamic and often less predictable with the increase of Distributed Generation. This will require more active control of the networks.

Other Distribution Systems

Distribution System

Loads

Distributed Generation
Key Organisations

The transmission and distribution systems are owned and operated by regulated monopoly businesses. Transmission and distribution businesses recover the costs of operating and maintaining their systems by levying Use of System charges on electricity traded using their network.

Transmission Owner (TO)
A TO owns and maintains the high voltage transmission system, known as the National Electricity Transmission System, referred to in this Guide as the transmission system. Transmission Owners are responsible for making sure that transmission services are available to the System Operator (see explanation later in this section). The Transmission Owners are as follows:

- National Grid Electricity Transmission (NGET) in England and Wales
- Scottish Power (SP Transmission Ltd) in southern Scotland
- Scottish and Southern Energy (SSE) in northern Scotland (Scottish Hydro Electric Transmission Ltd, or SHETL)

NGET is also the System Operator for the whole of Great Britain.

Distribution Network Operator (DNO)
A DNO owns, operates and maintains public electricity distribution networks in one or more regions in the UK. They must hold a Distribution Network Operator Licence. Under the terms of their licence, each DNO is allowed to distribute electricity both inside and outside its legacy geographic area.

There are six DNOs in Great Britain. The regions where they operate are shown on the map below.

Map of DNO regions in the UK:
For DNO website details, please see the membership area of the ENA website.
Key Organisations

To facilitate competition in supply, each DNO is required to allow any licensed supplier to use its distribution network to transfer electricity from the transmission system (and from Distributed Generation) to customers. DNOs charge suppliers for using the distribution system.

DNOs can form part of a group that undertakes other areas of business as well, e.g. electricity supply. However, these businesses have to be kept separate, and you, as a developer, will have to interface with the network operator business.

Independent Distribution Network Operators (IDNOs)
An IDNO designs, builds, owns and operates a distribution network, which is an extension of an existing DNO network. They typically build network for new developments such as business parks and residential areas. IDNOs differ from DNOs in that:
- they do not have service areas (e.g. they are not tied to a geographical location);
- although they are regulated like DNOs they have fewer licence conditions to meet.

To identify your DNO or IDNO:

If you already have a meter at your site, find the first two digits of your MPAN (Meter Point Administration Number), which is shown on your electricity bill, and may be shown on your meter. This corresponds to your DNO or IDNO, see table below.

If you do not have a meter at your site, you can contact the DNO whose geographic area you believe you are in and they will be able to confirm. See the map on the previous page.

<table>
<thead>
<tr>
<th>First 2 MPAN digits</th>
<th>Service Area</th>
<th>Distribution Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Eastern England</td>
<td>UK Power Networks – Eastern England</td>
</tr>
<tr>
<td>11</td>
<td>East Midlands</td>
<td>Western Power Distribution (WPD) – East Midlands</td>
</tr>
<tr>
<td>12</td>
<td>London</td>
<td>UK Power Networks (UKPN) – London Power Networks (LPN)</td>
</tr>
<tr>
<td>13</td>
<td>Cheshire, Merseyside and North Wales</td>
<td>SP Energy Networks – Cheshire, Merseyside and North Wales</td>
</tr>
<tr>
<td>14</td>
<td>West Midlands</td>
<td>Western Power Distribution (WPD) – West Midlands</td>
</tr>
<tr>
<td>15</td>
<td>North Eastern England</td>
<td>Northern Powergrid (NPG)</td>
</tr>
<tr>
<td>16</td>
<td>North Western England</td>
<td>Electricity North West (ENW)</td>
</tr>
<tr>
<td>17</td>
<td>Northern Scotland</td>
<td>SSE Power Distribution – Scottish Hydro Electric Power Distribution</td>
</tr>
<tr>
<td>18</td>
<td>Southern Scotland</td>
<td>SP Energy Networks</td>
</tr>
<tr>
<td>19</td>
<td>South Eastern England</td>
<td>UK Power Networks (UKPN) – South Eastern Power Networks (SPN)</td>
</tr>
<tr>
<td>21</td>
<td>Southern Wales</td>
<td>Western Power Distribution (WPD) – South Wales</td>
</tr>
<tr>
<td>22</td>
<td>South Western England</td>
<td>Western Power Distribution (WPD) – South West</td>
</tr>
<tr>
<td>23</td>
<td>Yorkshire</td>
<td>Northern Powergrid (NPG)</td>
</tr>
<tr>
<td>24</td>
<td>No area—IDNO</td>
<td>Envoy (Independent Power Networks)</td>
</tr>
<tr>
<td>25</td>
<td>No area—IDNO</td>
<td>ESP Electricity</td>
</tr>
<tr>
<td>26</td>
<td>No area—IDNO</td>
<td>Energetics (Energetics Electricity Ltd)</td>
</tr>
<tr>
<td>27</td>
<td>No area—IDNO</td>
<td>GTC (The Electricity Network Company)</td>
</tr>
<tr>
<td>28</td>
<td>No area—IDNO</td>
<td>EDF IDNO (UK Power Networks (IDNO) Ltd)</td>
</tr>
</tbody>
</table>
If you are connecting your Distributed Generation to an IDNO’s network, the process is almost identical to that if you are connecting to a DNO. There are a few exceptions to this, which are discussed in Section C of this Guide.

Private Networks
Private networks are similar to IDNO networks in that they are extensions of the DNO network which are not owned by the DNO itself. The owners of Private networks are distinct from an IDNO because they do not need to be licenced and are unregulated.

For example, private networks can be owned by hospitals, airports, industrial sites, etc. This Guide is not intended to address connections to private networks. If you are connected to a private network, you should discuss your plans with the network owner as soon as possible.

Suppliers
Supply is the retail of electricity. Suppliers buy electricity in bulk from generators, and then sell to consumers. They are responsible for providing bills and customer services, and arranging metering and meter reading. Electricity supply is a competitive market so you can choose and change your electricity supplier.

Energy Service Company (ESCO)
A Government paper defines ESCOs as “a company that provides a customer with energy solutions” rather than simply being an electricity or gas supplier. ESCOs can enter into long-term contracts to provide information, installation, finance, operation and maintenance.

There are various models the ESCO can take. ESCOs can work on a performance contract, where they guarantee energy savings and make charges based on the extent to which these savings are achieved. This model is typically used by commercial and industrial customers.

ESCOs can also work for communities, servicing a group of customers in the same local area. ESCOs may develop into a household model, to provide energy efficiency savings and small scale generation for home owners, rather than just supplying electricity.

Generators
Generators own, operate and maintain power stations which generate electricity from various energy sources, e.g. coal, gas, hydro and nuclear. Newer generation technologies include wind, solar, tidal and wave. See the end of this section for links to more information on generating technologies.

System Operator (SO)
Electricity cannot be stored at a large scale and so demand has to be balanced with generation on a second by second basis by the System Operator. The SO makes requests of generators to increase or decrease output from their units, or may ask some large customers to control their demand. National Grid Electricity Transmission (NGET) is the System Operator in Great Britain.

Balancing Settlement Code company
Elexon is the company that manages the balancing and settlement of electricity trading. They do this by identifying where generators have not generated the amount of electricity they are contracted to produce, and suppliers’ customers have not consumed the amount of electricity that was expected. Out of balance parties are charged based on the additional cost to balance supply and demand (often by buying or selling electricity at short notice).
Key Organisations

The Balancing and Settlement Code (BSC) governs the operation of this balancing mechanism.

Regulator
The Office of Gas and Electricity Markets (Ofgem) is responsible for:

- regulating prices and performance in the monopoly elements of the electricity supply industry;
- resolving disputes between different parties when necessary; and
- granting licences for the following activities in the power sector:
 - Generation
 - Transmission (and interconnection, a transmission link with another country)
 - Distribution
 - Supply

Generation licence requirements for Distributed Generation are discussed in Section D. The Connection Application: Generation Licensing.

Network Innovation Projects

New challenges and applications in energy networks have motivated many projects that aim to innovate the way networks operate and develop new technologies and techniques. Ofgem has introduced the Low Carbon Networks Fund (LCNF), which aims to drive innovation in electricity distribution networks. It will provide up to £500 million of funding over five years (from 2009). Some examples of LCNF projects are:

- **Application of Storage and Demand Side Management**—Investigates the benefits of integrating storage and Demand Side Management technologies in the operation and development of active distribution networks.

- **My Electric Avenue**—Investigates ways to manage the additional demand on distribution networks from the anticipated increased uptake of electric vehicles.

- **Active Network Management** — Aims to maximise the utilisation of the distribution network capacity based on real-time measurements and management of generation.

- **Smart Grid Design**—Investigates alternative network designs and operational arrangements both under existing demand patterns and with a view to accommodating Distributed Generation.

Ofgem has also introduced the Network Innovation Allowance (NIA) and Network Innovation Competitions (NICs) to incentivise innovation amongst the Transmission Owners.

The NIA is an allowance for the Transmission Owners in order to fund smaller scale innovation projects, while NICs are a series of competitions where companies compete for funding for larger scale projects. Learning from these projects is to be shared amongst all DNOs and TOs for the benefit of the power sector as a whole.

For more information, and details about individual projects, refer to the Smarter Networks Portal, hosted by the Energy Networks Association:

http://www.smarternetworks.org/
Where to Find More Information

There are some very good guides to the UK power sector available in the public domain. In particular, if you want to read more on this subject, you may wish to read the following:

- **A Guide: Sale of Power Opportunities for Distributed Generators**; DTI (Department for Trade and Industry);

- **Guidance Note – The Electricity Trading Arrangements: A beginner’s guide**; Elexon www.elexon.co.uk

A good source of information on the organisations we have introduced are their own websites:

- Energy Networks Association —the industry body for UK energy transmission and distribution licence holders and operators: www.energynetworks.org

- A list of IDNOs can be found on the Ofgem website: http://www.ofgem.gov.uk/Networks/ElecDist/Policy/IDNOs/Pages/IDNOs.aspx

- Ofgem—The Regulator: www.ofgem.gov.uk

- Elexon—The Balancing and Settlement Code Company: www.elexon.co.uk

For more information on ESCOs, the following document is a useful reference:

- **Making ESCOs Work: Guidance and Advice on Setting Up and Delivering an ESCO**; London Energy Partnership, which is on the London Energy Partnership website: www.lep.org.uk

The following website gives more information on generation technologies:

- Energy Saving Trust: http://www.energysavingtrust.org.uk/Generate-your-own-energy
B: The Role of Distributed Generation

In this section:
- An introduction to the role of Distributed Generation
- A discussion on the drivers for Distributed Generation
- Some of the benefits and impacts of Distributed Generation
- References to some documents where you can find out more on these issues

Introduction

As explained in Section A of this Guide, the electricity industry is undergoing changes with increasing amounts of Distributed Generation being connected to the system. There are a number of drivers behind this:
- Environmental issues;
- New Government Policy;
- Security of supply; and
- Technological innovation.

In this section, these drivers are discussed in more detail. We will also introduce some of the benefits and challenges of Distributed Generation.

We refer to some useful documents and reports for further reading on this topic.

What is Driving Distributed Generation?

Environmental concerns
Globally there has been increasing concern over greenhouse gas emissions and the impact that they may be having on the environment.

Most of the electricity in the UK is generated by power stations fuelled by fossil fuels, for example coal, gas and oil. The burning of these fuels make a significant contribution to emissions.

There is therefore a drive to change the mix of generation technologies we have, to include more low-carbon options.

Technological innovation
Technology is developing all the time, and due to drivers such as environmental concerns and government policy, there are more generating technologies available now than there were when the national grid was being developed. For example, wind, wave, solar and biomass generation.

Although the connection and integration of these newer generating technologies may pose challenges, innovative technical solutions are being sought to overcome these challenges. These are discussed on page 13.
What is Driving Distributed Generation?

Government policy
The Department of Energy and Climate Change (DECC) was set up in 2008 to oversee energy policy and climate change mitigation policy. The UK energy supply is one of DECC’s key policy areas. DECC is developing policy to ensure that in the UK energy supplies are secure, low carbon, and fuelled from a diverse mix of energy supplies. However, DECC also has to ensure that energy prices are maintained at affordable levels. Relevant pieces of legislation include:
- Climate Change Act 2008
- Energy Act 2008
- Energy Bill

The Climate Change Act sets out legally binding targets for emissions reductions. As such, policy has been developed, which introduces initiatives such as:
- Climate Change Agreement (Climate Change Levy)
- Zero Carbon Homes
As well as legislation from the UK Government, the EU also introduces relevant legislation and initiatives, such as the EU Emissions Trading System and the European Third Package, which is driving a set of new European Network Codes.

Security of Supply
The UK increasingly relies on importing fuel, in the form of gas, coal and oil. This introduces a great deal of uncertainty as the cost and reliability of supply is outside of UK control. It is therefore an advantage to have a diverse mix of energy sources, which would make the UK less vulnerable to a restriction in fuel availability or rise in price.

It is also known that fossil fuels will eventually run out as they are being used much faster than they are being created. As they become more scarce, the prices will rise as the markets become more competitive. Therefore to ensure the security of the energy supply into the future, alternative sources are being encouraged.

Benefits of Distributed Generation

There are a number of benefits that increased Distributed Generation has for the UK and its electricity system. These include:
- **Increased energy mix** — Distributed Generation is often a renewable source of energy, such as solar, wind or biomass, or uses the energy in a more efficient way as with Combined Heat and Power (CHP) projects. Therefore increased Distributed Generation results in a lower carbon mix of energy sources in the electricity system.

- If Distributed Generation is connected close to the point of use, there is a **reduced need for the distribution and transmission infrastructure**. In some cases, this can delay the need for reinforcement, although the TO and the DNO also need to ensure that the network provides adequate security of supply for its users.

- Where there is a balance between Distributed Generation and local demand the **transmission and distribution losses are reduced**, when compared with the alternative of the centralised power stations and bulk transmission of electricity.

- The introduction of local generation in businesses and communities can lead to **greater awareness of energy issues**.
Impacts of Distributed Generation

As well as introducing benefits, the increased penetration of Distributed Generation in UK distribution networks also poses challenges. These will depend on a variety of factors, such as the generation technology, the voltage level the Distributed Generation is connected to, the size of the generating unit(s), the level of export to the distribution system, and on the type of network (e.g. urban or rural).

Some examples of the challenges posed to distribution networks by Distributed Generation include:

- Distributed Generation changes the current flows and shape of the load cycle where they are connected. This could cause:
 - **Thermal ratings to be exceeded.**
 - **System voltage to rise** beyond the acceptable limits.
 - **Reverse power flows**, i.e. power flows in the opposite direction to which the system has been designed.

- Distributed Generation can contribute to **fault level**, which can raise the fault level above the rating of network equipment.

Benefits of Distributed Generation

There are a variety of commercial benefits to having Distributed Generation, which include:

- **Self Consumption**, where you use the electricity that you generate to avoid importing from the grid, therefore lowering your electricity bills.

- **Selling electricity** that you generate, including gaining Feed In Tariff (FIT) payments and Renewable Obligations Certificates (ROCs). This is discussed further in Section F: Selling Electricity.

- **Climate Change Levy Exemption Certificates (LECs)** are issued to generators of renewable energy and good quality Combined Heat and Power (CHP). These can be sold to the supplier along with the energy generated. Companies can use LECs to avoid paying the Climate Change Levy tax.

- **Embedded benefits** of the generating unit being connected to the distribution rather than the transmission network, e.g. charge avoidance of Transmission Network Use of System charges and Balancing Services Use of System charges.

- Generators whose equipment has a capacity greater than 3 MW (and/or the ability to deliver in excess of +/- 15 MVAr of reactive power) can enter into agreements with NGET to provide **Ancillary Services**, for which they will be paid.

- **EU Emissions Trading System (ETS)** - applies to approximately 10,000 energy intensive users in the UK such as metal industry, paper factories and refineries. These large energy users have been allocated green-house gas allowances for their operations. At the end of each year, they must ensure they have enough allowances to cover their emissions: they can buy additional allowances or sell any surplus allowances generated from reducing their emissions.
Impacts of Distributed Generation

- There are a number of **power quality** limits that can be affected by Distributed Generation, including:
 - **Contributions to harmonics**, particularly if a significant number of invertor controllers are present.
 - **Voltage unbalance** which affects power quality, if there are lots of single-phase generating units
 - **Voltage fluctuation or flicker**, if the output of the Distributed Generation changes rapidly.

 Note: The technical terms used above are defined in the glossary.

Where to Find More Information

The benefits and challenges of Distributed Generation are complex, and the industry’s understanding of them is evolving as experience increases. For more information on some issues surrounding increasing levels of Distributed Generation in the UK, the following documents are useful:

- **Review of Distributed Generation**: Department for Trade and Industry, Ofgem; May 2007
- **Future Network Architectures**: Department for Business, Enterprise and Regulatory Reform; 2007
- **Solutions for the Connection and Operation of Distributed Generation**: Distributed Generation Co-ordinating Group Technical Steering Committee report; DTI and Renewable Energy Programme; July 2003

The following documents are useful if you want more information on Government policy:

- **The UK Low Carbon Transition Plan—National strategy for climate and energy**: Government; 2009
- **The UK Renewable Energy Strategy**: Government; 2009

For the most up to date information on relevant Government policy, refer to the DECC website: www.decc.gov.uk

For more information on commercial benefits available to Distributed Generation the following report, although out of date, gives a good overview:

- **The Tradable Value of Distributed Generation**: Department for Trade and Industry; 2005

For more information on Embedded Benefits, the following document is useful:

- **Embedded Generation and Embedded Benefits**: Elexon; November 2013

For more information on Climate Change Levy Renewable and Good Quality CHP Exemptions, refer to [HM Revenue & Customs website](http://www.hmrc.gov.uk)

For more information on the EU ETS scheme, the [Environment Agency website](http://www.environment-agency.gov.uk) is a good source.
C. An Overview of Getting Connected

In this section:
- An introduction to getting connected
- The main tasks in the process of connecting small generating units in multiple premises
- Guidance on where to find more information

Tip: Read the boxes for definitions or explanations of terms that may be new or unfamiliar.

Introduction

While the process for connecting small-scale generation in a single premises is relatively simple, the process for connecting small-scale generation in multiple premises is more involved. Projects involving multiple installations could be, for example:

- A housing refurbishment programme in the same road or street
- A new housing development

There is a key difference between connecting units at one customer site and multiple units within different customer sites within a close geographic region: for multiple sites you need to get approval from the Distribution Network Operator (DNO) before you can connect.

The diagram opposite presents the key actions that you have to complete to connect multiple units of small-scale generation within different customer sites and in a close geographic region. These tasks are based on the requirements set out in EREC G83, and are described further in this section.
Getting Connected—Main Tasks

Finding an Installer
The first task is to find a competent installer, who is using type tested equipment (see note in “Is this the right Guide for my project?”). There are companies who design, install and commission domestic generation. They can fully certify and sign off installations. Certified generation products and installers can be found on the following website: www.microgenerationcertification.org

The Microgeneration Certification Scheme is operated by the Department for Energy and Climate Change (DECC). Your installer must be certified in order for you to claim Feed-in Tariffs, with the exception of hydro and anaerobic digestion projects, which have to go through the ROO-FIT process. There is more information about this in Section F: Selling Electricity - Feed-in Tariffs (FITs).

Discussions with the DNO
You must discuss your plans with the DNO before starting work. You should do this as soon as possible in your planning, as the DNO’s response may have a big impact on how you plan your project. You may discuss the feasibility of your connection, and if there will be any charges for connection (charges are discussed further in Section E—Costs and Charges).

If your generation project is part of a larger project, e.g. developing new housing, then your application needs to be co-ordinated with the connection application for the import supplies themselves. The DNO will need to take into account the new generation in the design of the overall connection.

Submitting an application form
Once you have planned the project and exchanged information about your plans with the DNO, it is time to submit an application form. The format of the application form is given in Appendix 2 of EREC G83, which is available free of charge on the Energy Network Association’s website. Your installer should submit the application form on your behalf.

Application acceptance
When you submit your application form you need to include technical details of the equipment. The DNO needs this information to assess the impact that your generating equipment may have on the network.

Once the DNO has conducted these assessments, they will produce a connection offer. This will specify the conditions for your connection, and inform you of any connection charge that you may be asked to pay (charges are discussed further in Section E—Costs and Charges). You should ensure that you fully understand this offer before accepting it. You should discuss questions with your DNO if you are unsure.

Construction and Commissioning
Your installer should be aware of the requirements to ensure that construction and commissioning is in line with EREC G83. These requirements are described in Section 7 of EREC G83, which states that the equipment must be installed within the manufacturers’ instructions, and that no modifications should be made.

Your DNO will also complete any work that is required on the network. Close communication with the DNO throughout this process will allow coordinated planning of construction and connection.

During the commissioning, your installer will check that your equipment is working as it should. EREC G83 specifies that the installation must act as required in the event of your mains power being interrupted.
Informing the DNO
Once your installation is complete, the DNO needs to be made aware of your generating unit(s). This is so that the DNO can take this into account when operating and designing the network.

Your installer should notify the DNO within 28 days of commissioning the generating units in each premises, and provide them with information on the installation. This information is called “installation commissioning confirmation”. The content and format of the installation commissioning confirmation is set out in Appendix 3 of EREC G83, which is available free of charge on the Energy Networks Association website. Note: DNOs may have their own installation commissioning confirmation forms on their websites—a web search should help you locate the forms you need, or try telephoning your DNO.

Ongoing responsibilities
Although the focus of this Guide is to inform you about the process of connecting generation to the distribution network, you (or the owner of the equipment if that is not you) should be aware that once it is connected you have some responsibilities. This includes the responsibility to keep it maintained by someone who is competent to do so.

Getting Connected — IDNO’s Networks

The process for connecting your Distributed Generation to an IDNO’s network follows EREC G83 or G59, and is therefore similar to connecting to a DNO’s network. IDNOs are licensed entities and are bound by some of the same licence conditions as DNOs, including certain performance standards such as timescales for responding to requests for quotes. The majority of what is included in this guide applies to both DNO and IDNO connections.

However, there are a few key differences for a Distributed Generation connection to an IDNO:

- **Provision of Information**: IDNOs have a reduced set of licence conditions compared with DNOs, and they are not obliged to provide the same documents for customers. IDNOs are not required to produce Long Term Development Statements nor Connection Charging methodologies and statements.

- **Interaction between the IDNO and the DNO**: When an IDNO receives an application for connection for Distributed Generation, they need to get approval from the DNO before they can offer to connect you. If your generation project would cause certain network parameters to exceed defined limits, such as voltage or export to the DNO network, the IDNO and DNO will explore options for accommodating your project. This discussion will take place between the IDNO and the DNO, and will not involve you directly. However, the IDNO may then discuss different options with you for the most appropriate generation project to be connected.

- **Formal Agreements**: IDNOs will not necessarily insist on the same set of formal agreements that the DNOs will. Agreements such as the connection and adoption agreements may not be required.

To determine whether you are connected to a DNO or IDNO network, refer to the guidance on page 11.
Customer Service and Provision of Information

There are a number of drivers for DNOs to provide a good level of service to customers, including:

- Standards of Performance (as set out in Standard Licence Condition 15A); and
- Ofgem DG forums.

Standards of Performance
Ofgem has set minimum performance standards, in certain areas of connections. These are called Guaranteed Standards of Performance and Guaranteed Standards of Service. If DNOs fail to meet these standards for your connection, you may be entitled to receive a payment. For example, these set the maximum timescales in which DNOs can provide you with a quotation (connection offer). The ENA has guidance documents about these Standards on their website:

Ofgem DG forums
Ofgem held a series of regional events (“DG forums”) to explore issues and concerns around Distributed Generation connections, including barriers to Distributed Generation and process issues. DNOs responded to these concerns in a number of ways, including:

- Increased internal resources (e.g. dedicated Distributed Generation teams);
- Providing a more detailed breakdown of costs;
- Making improvements to the provision of information;
- Holding stakeholder workshops and customer events (e.g. some DNOs host “open surgeries” for Distributed Generation customers);
- Utilising new technologies and techniques in connection offers; and
- Exploring the possibility for discussions prior to formal application (“connection optioneering”).

The improved provision of information is particularly relevant in the early stages of your connection. This can include Distributed Generation web portals, and capacity “heat maps”, indicating areas that can more readily facilitate connections. In addition, each DNO publishes a Distributed Generation 'Work Plan' on its website that outlines progress against improvement initiatives. Check your DNO’s Distributed Generation web pages.

Dealing with disputes
If you are not satisfied with a particular aspect of service during the process of connecting your generation, your first port of call should be the party with whom the issue lies, e.g. the DNO, supplier, etc. DNOs have their complaints process set out on their website. If you still cannot resolve the issue you can contact the Energy Ombudsman:

www.ombudsman-services.org/energy.html

If you are still unable to resolve the matter, as a last resort it can be referred to Ofgem.

Supply Issues
Your DNO is obligated to maintain the power quality on their network within a set of defined limits. These include maintaining voltage at the required levels. This is so that customer equipment is not damaged. If you have a voltage complaint you should contact your DNO. Your DNO should respond to your complaint within 5 working days, or visit within 7 working days. If work is required to correct the issue, the DNO should complete this within 6 months.
Where to Find More Information

If you want to find out more, these documents are particularly relevant:

- **Engineering Recommendation EREC G83**: Recommendations for the Connection of Type Tested Small-scale Embedded Generators (Up to 16 A per Phase) in Parallel with Low-Voltage Distribution Systems — a technical document, with references to other relevant sources of detailed technical information. Key appendices of G83 are available free of charge on the ENA’s Website.

- **Electricity Safety, Quality and Continuity Regulations (ESQCR) 2002, Section 22**: Statutory Instrument Number 2665, available free of charge.

Some DNOs have produced their own guidance notes for small scale generation connections - check your DNO’s website.

Health and Safety considerations

Safety is very important in the design of generation connections. Some of the safety requirements for Distributed Generation connections are set out in EREC G83. This document references the Regulation that informs these requirements, the Electricity Safety, Quality and Continuity Regulations (ESQCR) 2002, and also lists the relevant British Standards.

You can find out more about Health and Safety aspects of Distributed Generation connections on the following websites:

- The Electrical Safety Council (ESC): www.esc.org.uk
- The Energy Networks Association—Safety, health and environment: http://www.energynetworks.org/electricity/she/overview.html
D. The Connection Application: Connection Application Process

In this section:
- How to apply to your DNO for connecting generating units in multiple premises
- Details of the information that you will need to provide to the DNO and the design work they may need to do to assess your connection
- How to notify the DNO that your generation unit(s) has been installed and commissioned in accordance with EREC G83

Introduction

This section of the Guide describes how to inform your DNO that you are planning to install a number of generating units that fall under EREC G83 in to different customer sites within a close geographic region. This section also explains the notifications which the installer of your equipment will need to give to your DNO once the units are commissioned.

The Application for Connection Pro-forma

The Application for Connection Pro-forma included in EREC G83 should be completed by your installer if you are planning to install generating units of the types covered by EREC G83 in to different customer sites within a close geographic region. This should be submitted before any generation is installed, as the DNO needs to assess the possible impact of your generating equipment on the distribution network. The format for the application is shown in Appendix 2 of EREC G83, which is available free of charge on the Energy Networks Association website.

The form requires a number of pieces of information:
- details of the installer of the generating units, including their qualifications; and
- information on the proposed equipment, including the address, meter number, capacity and type testing reference number.

When the application has been submitted to the DNO by your installer, the DNO will assess the impact of the generation on their network. Where necessary, they will carry out design work, e.g. for network reinforcement.

As mentioned, if your generation project is part of a larger project, e.g. developing new housing, then your application needs to be coordinated with the connection application for import supplies.

Connection of the generation equipment will only be allowed to proceed after the DNO has approved the application, and any facilitating works for the connection have been completed.
Installation and Commissioning

If the DNO gives permission for the installation of your generation equipment to proceed, your installer will install and commission the generating units. They must then notify the DNO that this has been done, in accordance with the Electricity Safety, Quality and Continuity Regulations (ESQCR). The process and timescales for doing this are described below.

The Commissioning Pro-forma

The installer of your generating units has to tell the DNO about each generation installation within 28 days of the date of commissioning (including the commissioning day itself).

The Commissioning Pro-forma included in EREC G83 is a convenient way of capturing all of the information that the DNO needs to know once your installer has commissioned each of your generating units.

This can be found in Appendix 3 of EREC G83, which is available free of charge on the Energy Networks Association website.

The information required includes:
- contact details for the owner of the generating unit;
- technical information about the generating unit itself, including the generating capacity, type test reference and primary energy source;
- details of the installer of the generating unit, including the party’s accreditation and qualifications;
- supporting information, e.g. circuit diagrams; and
- a signed declaration as to the compliance of the generating unit with the requirements of G83.

One commissioning pro-forma is required for each generating unit.

Other Requirements

The declaration that your installer signs on the Commissioning Pro-forma requires them to confirm that they’ve installed your generating unit in accordance with EREC G83. It’s important that you use an installer who is familiar with the requirements of these standards. If you appoint a competent installer (see Section C. An Overview of Getting Connected), they should know about these standards and make sure that your installation meets with all the relevant standards.
E. Cost and Charges: Overview of Charges

In this section:
- An introduction to connection costs
- The basis of DNO connection charges for infrastructure
- Other elements of connection charges and where to find indicative costs and examples
- Generation Distribution Use of System charges

Read the boxes for definitions or explanations of terms that may be new or unfamiliar.

Introduction

There are two categories of charges made by the DNO:
- **Connection charge**: this is a one-off charge made by the DNO, which primarily covers the cost of work and equipment associated with connecting your generating project to the distribution network. This includes a portion of reinforcement costs.
- **Use of System charges**: these are ongoing charges, which primarily cover operation and maintenance costs and include an element to cover the costs of ongoing network development including general reinforcement.

DNOs are obliged to publish documents describing the basis of their connection charges and their charging methodology. They also present the different elements of connection charges, and indicative costs for works and equipment of significant cost. This will help you to understand the charges they quote you.

This information is contained in the DNOs Statement of Methodology and Charges for Connection to the electricity distribution system. All DNOs’ statements follow the same format, and are available on their websites. This document contains:
- The DNO’s connection charging methodology (i.e. how they calculate their charges);
- The DNO’s connection charging statement (i.e. what the charges are);
- An indication of the costs of providing a connection quotation / budget estimate; and
- Other relevant information for connecting customers.

The basis and elements of connection charges, as well as indicative costs and examples are discussed in this section.

Use of System charges are levied by the DNO on the supplier, so as a generator you will not be charged these directly. However, this section is included for your information, as Use of System charges may appear as an item on your bill.
Connection Charges

Depending on the location and size of your generating units the DNO may have to modify an existing part of the network to accommodate your project. Reinforcement work may be required to increase the electrical capacity of those parts of the network which form part of the electrical path from the generating units to the network. The connection charge includes a portion of reinforcement costs.

DNOs are obliged to publish a document describing the basis of their connection charges and their charging methodology. You can refer to this document to see what portion of reinforcement costs you will be charged for. These are available on DNO websites.

Connection Charges—Other Elements

Elements of charges
As well as charges for the reinforcement, there are other elements that are covered in the connection charge. These can include the following:
- System / feasibility / fault level studies
- Provision of Wayleaves
- Additional meetings with the DNO or site visits
- Administration

Note that not all DNOs apply charges for all of these items, and that not all of these items will be relevant for your project.

Indicative costs and examples
Equipment costs and charges for services vary across DNOs; it could therefore be misleading to list indicative costs in this Guide. If you want to get an idea for indicative costs, the best place to look is the DNO’s Statement of methodology and charges for connection. You can find this on the DNO’s website.

Aside from giving indicative costs for connection charges, these documents typically contain other useful information, including guidance on the connection process and examples of various connections and their associated cost breakdown. It is updated annually.

The connection charging methodology is governed by the Distribution Connection and Use of System Agreement (DCUSA) and is subject to open governance so any party materially affected by it can propose a change to it. The process for doing this is laid out within the DCUSA itself. See the DCUSA website for more information: www.dcusa.co.uk

The Connection Charging Methodologies Forum exists to enable parties to discuss ideas for improving the methodology possibly prior to submitting a formal change proposal.

Estimating costs and getting a quotation
As mentioned, you can obtain indicative costs for works and equipment from DNO documents. To obtain a more accurate picture of the connection costs for your project, you can:
- Ask the DNO for a budget estimate
- Obtain an estimate of connection costs from a specialist engineering consultant

You should exercise care in interpreting budget estimates. DNOs use reasonable endeavours to identify remote reinforcement costs associated with the proposed connection at this stage. However, it is possible that not all of the reinforcement costs will be included at this time.
Connection Charges—Other Elements

Payment of connection charges
Connection charges are paid either:
- in full at the time that the connection offer is accepted; or
- in staged or phased payments, as per a payment schedule.

If your connection does not proceed, it is possible that some of the connection charge will be refundable depending on if the DNO has performed the work. You should inform your DNO as soon as possible if you decide not to go ahead with your project.

Staged payments are typically used for generation projects which are greater than a certain size, e.g. in project value or duration. The staged payments cover committed expenditure by the DNO.

Assessment and Design fees:
At the time of writing, DNOs cannot charge for the development of their connection offer under Section 16 of the Electricity Act. However they may make up-front charges for budget estimates, feasibility studies and other enquiries. DECC are working with Ofgem to create a framework that would allow DNOs to charge up-front fees in the case of formal quotations, however the timeframe for this is still unclear.

What is a budget estimate?
You may read about budget or indicative estimates and formal or firm quotations. The differences between these two terms are summarised in the following table.

<table>
<thead>
<tr>
<th>Budget or Indicative estimate</th>
<th>Firm or formal quotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested in the early stage of a project, and generally only for larger capital schemes</td>
<td>Requested when electrical requirements have been finalised</td>
</tr>
<tr>
<td>The DNO doesn’t require much information from you</td>
<td>The DNO requires a lot of information from you</td>
</tr>
<tr>
<td>Based on a desktop study—the DNO is unlikely to carry out detailed designs or studies</td>
<td>Based on detailed design work, and may require other input such as site surveys</td>
</tr>
<tr>
<td>To give an indication of costs, and is therefore subject to change</td>
<td>Provides formal contract offer</td>
</tr>
<tr>
<td>Not open for acceptance</td>
<td>Open to acceptance, subject to conditions</td>
</tr>
<tr>
<td>DNO may charge</td>
<td>DNO will not charge</td>
</tr>
</tbody>
</table>

Assuming that you ask the DNO to undertake all of the work involved in your connection, the timescale for the DNO to provide a budget estimate is 10 working days.
Use of System Charges

Use of System charges are levied by the DNO to the supplier, so as a generator you will not be charged these directly. However, this section is included for your information, as Use of System charges may appear as an item on your bill.

What are Use of System charges?
Use of System charges cover the development, operation, maintenance and repair of the distribution network. DNOs make Use of System charges to suppliers. Suppliers may reflect these charges to their customers as either:

- a ‘pass-through’ item so that the customer can clearly see the Use of System element; or

- ‘wrapped-up’ in a total electricity supply tariff where the customer may not be able to clearly see the Use of System element.

DNOs are obliged to publish documents about their Use of System charges. These cover their Use of System charging methodology and a statement of what the charges are for both generation and demand customers. You can find these on DNOs’ websites.

All generators connected at Low Voltage are subject to Generation Distribution Use of System charges under the Common Distribution Charging Methodology (CDCM). These charges are currently negative (i.e. credits). You can find out more about the Common Distribution Charging Methodology (CDCM) by looking at Distribution Charging on the Ofgem website, Structure of Charges on the Energy Networks Association website and some DNOs’ websites.

Categories of Use of System charges
UoS charges are categorised by:

- the voltage level your equipment is connected to and;
- the type of meter you have.

The boxes below define the voltage level that will apply to EREC G83 compliant equipment (Low Voltage) and the metering arrangements that are likely to apply to this equipment (Non-Half Hourly meters). With the Common Distribution Charging Methodology charges for LV generation customers with NHH meters are in the form of a single unit rate (p/kWh).

Non-Half Hourly Meters (NHH)
NHH meters record total energy passing through the meter, but do not record the times the energy is transferred. Typically the recorded data would be collected a few times a year, e.g. every quarter. Most domestic and small commercial properties have NHH meters. You can contact your current electricity supplier to discuss the provision of NHH meters, or other meter suppliers.

| LV (Low Voltage) | 400/230 V in practice, less than 1 kV in general. |

F: Selling Electricity - Feed-in Tariffs (FITs)

In this section:
- An introduction to the Feed-in Tariff Incentive
- Eligibility and Accreditation
- Guidance on where to find more information

Tip: Read the information boxes for definitions or explanations of terms that may be new or unfamiliar.

Introduction

Feed-in Tariffs (FITs) are a financial incentive to support distributed and small-scale renewable energy generation, up to 5 MW.

FITs are available for the following generation technologies:
- Anaerobic digestion
- Hydro
- Solar PV
- Wind

A number of domestic Combined Heat and Power (CHP) units are also supported through FITs under a Micro CHP pilot scheme. The Micro CHP pilot will support up to 30,000 installations with an electrical capacity no greater than 2 kW.

This section will detail the structure of the tariffs, and lists the current tariff levels. It will also explain how to get accredited with FITs.

Tariff Structure

There are three sources of financial benefit from a Generation project receiving FITs:

- **Generation tariff (FITs):** A fixed price for each unit of electricity generated (See page 58 for generation tariffs).
- **Export tariff:** A guaranteed price for each unit of electricity exported to the grid.
- **Import reduction:** reducing your import from the grid by using your own electricity.

Tariffs are adjusted annually for inflation.

The generation tariffs are shown in the tables on page 58. These are the most recent tariff levels at the time of printing, but the levels are reviewed periodically. The most recent FIT payment rates are publish by Ofgem, and you can access them on their webpage.

The tariff level that your generator will receive will be the most recent tariff level on the eligibility date of the installation. You will continue to receive this same tariff throughout the eligible lifetime of the project, which for most technologies is 20 years (tariff lifetimes are given in the table on page 58).
FITs for PV generation
The FITs for PV are structured in a slightly different way:

- They have an accelerated digression mechanism—PV generation tariffs will change every 3 months, subject to the rate of deployment; and

- The tariff period has reduced from 25 years to 20 years for all PV installations.

The installations are also subject to the following criteria:

- Energy efficiency requirements—the building to which the solar PV is attached should achieve an Energy Performance Certificate (EPC) rating of level D or above for installations up to and including 250 kW; and

- Multi-installation tariffs—applies to any solar PV installation where the recipient of the FIT already receives FIT payments from 25 or more other PV installations.

The impact of these criteria on the tariff level received is summarised on page 58. Refer to the DECC or Ofgem websites for the most up to date information.

Export Tariff
The export tariff is a guaranteed price for the export of your generated electricity, and is the same for all installations which are eligible for FITs. At the time of writing, the export tariff is set at 4.64p/kWh, but this is subject to regular reviews. Refer to the DECC or Ofgem websites for the most up to date information.

Metering Requirements
You will need to measure three electrical flows to get the most out of the FIT scheme; import (this is your usual electricity meter), generation and export. For your generation financial stream, each of your generating units must be measured separately.

For your export payments, you may choose to measure your export to the grid via a meter (often called an export meter). However, the Government is allowing an interim measure of estimating export, subject to conditions. For example, the Energy Savings Trust website states that domestic FIT installations are likely to have an estimated export level of 50% of electricity generated.

Your electricity supplier is a good first port of call to discuss metering arrangements.

Tariff Structure

FIT Example
The example tariff levels are:
Import tariff: 10p/kWh, Generation tariff: 21.65p/kWh

Before Installation
Demand: 4500kWh per year
Import: 4500kWh per year

Income per year:
Generation: 2500kWh x 21.65p/kWh = £541.25
Export: 1000kWh x 4.64p/kWh = £46.40
This is a total income of £587.65

Cost of Import per year:
4500kWh x 10p/kWh = £450

This is a saving of £150 due to avoided import.

Total net benefit: £587.65 + £150 = £737.65 per year
Tariff Levels

Tariff level for Non-PV Generation

<table>
<thead>
<tr>
<th>Technology and scale (Total Installed Capacity)</th>
<th>Generation tariff (p/kWh)</th>
<th>Tariff lifetime (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic digestion at 250 kW or less</td>
<td>15.16</td>
<td>20</td>
</tr>
<tr>
<td>Anaerobic digestion between 250 kW and 500 kW</td>
<td>14.02</td>
<td>20</td>
</tr>
<tr>
<td>Anaerobic digestion between 500 kW and 5 MW</td>
<td>9.24</td>
<td>20</td>
</tr>
<tr>
<td>Hydro generation at 15 kW or less</td>
<td>21.65</td>
<td>20</td>
</tr>
<tr>
<td>Hydro generation between 15 kW and 100 kW</td>
<td>20.21</td>
<td>20</td>
</tr>
<tr>
<td>Hydro generation between 100 kW and 500 kW</td>
<td>15.98</td>
<td>20</td>
</tr>
<tr>
<td>Hydro generation between 500 kW and 2 MW</td>
<td>12.48</td>
<td>20</td>
</tr>
<tr>
<td>Hydro generation between 2 MW and 5 MW</td>
<td>3.23</td>
<td>20</td>
</tr>
<tr>
<td>Micro CHP at 2 kW or less (see note on page 60)</td>
<td>12.89</td>
<td>10</td>
</tr>
<tr>
<td>Wind generation at 1.5 kW or less</td>
<td>21.65</td>
<td>20</td>
</tr>
<tr>
<td>Wind generation between 1.5 kW and 15 kW</td>
<td>21.65</td>
<td>20</td>
</tr>
<tr>
<td>Wind generation between 15 kW and 100 kW</td>
<td>21.65</td>
<td>20</td>
</tr>
<tr>
<td>Wind generation between 100 kW and 500 kW</td>
<td>18.04</td>
<td>20</td>
</tr>
<tr>
<td>Wind generation between 500 kW and 1.5 MW</td>
<td>9.79</td>
<td>20</td>
</tr>
<tr>
<td>Wind generation between 1.5 MW and 5 MW</td>
<td>4.15</td>
<td>20</td>
</tr>
<tr>
<td>Existing micro generators transferred from RO</td>
<td>10.21</td>
<td>To 2027</td>
</tr>
</tbody>
</table>

Tariff level for PV Generation

<table>
<thead>
<tr>
<th>Scale of PV installation (Total Installed Capacity)</th>
<th>PV Generation tariff (p/kWh) , valid from 1st October 2013 to 1st January 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower rate</td>
</tr>
<tr>
<td>4 kW or less, new build</td>
<td>6.85</td>
</tr>
<tr>
<td>4 kW or less, retrofit</td>
<td>6.85</td>
</tr>
<tr>
<td>Between 4 kW and 10 kW</td>
<td>6.85</td>
</tr>
<tr>
<td>Between 10 kW and 50 kW</td>
<td>6.85</td>
</tr>
<tr>
<td>Between 50 kW and 100 kW</td>
<td>6.85</td>
</tr>
<tr>
<td>Between 100 kW and 150 kW</td>
<td>6.85</td>
</tr>
<tr>
<td>Between 150 kW and 250 kW</td>
<td>6.85</td>
</tr>
<tr>
<td>Between 250 kW and 5 MW</td>
<td>6.85</td>
</tr>
<tr>
<td>Stand alone system</td>
<td>6.85</td>
</tr>
</tbody>
</table>

The use of the different rates depends on the criteria explained on page 57.

Where the Multi-Installation Tariff does not apply:

<table>
<thead>
<tr>
<th>Energy Efficiency Requirements Met?</th>
<th>Higher rate</th>
<th>Lower rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not apply</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where the Multi-Installation Tariff does apply:

<table>
<thead>
<tr>
<th>Energy Efficiency Requirements Met?</th>
<th>Middle rate</th>
<th>Lower rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not apply</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eligibility and Accreditation

Renewable Energy generators under 5 MW are eligible for Feed-in Tariffs. Renewable Energy generators supplying off-grid or private networks are also covered by the FITs scheme. They receive generation tariffs and the benefit of avoiding the costs of generating electricity by other means e.g. Diesel.

Accreditation steps:
There are two routes to accreditation. For generation that is wind, solar PV, or Micro CHP the accreditation process is as follows (“MCS-FIT”):
1. Install your generating unit—you must use a Microgeneration Certification Scheme (MCS) installer (see below);
2. Your installer will register you on a central accreditation system;
3. You will receive a certificate confirming you are eligible for FITs;
4. Register for a FIT with your supplier, and provide them with your FIT compliance certificate so that they can verify your eligibility;
5. Indicate to your supplier if you are opting for the guaranteed export tariff or if you prefer to sell your electricity using a Power Purchase Agreement (a legal contract between you and your electricity supplier);
6. Your supplier will then be responsible for the level of payment you will receive for the electricity generated and exported, for which you may be required to provide meter readings.

For anaerobic digestion and hydro generators, the following “ROO-FIT” process applies (see note on next page):
1. Install your generating unit;
2. Apply for accreditation through Ofgem’s Renewable and CHP register (see Section F. Selling Electricity—Renewables Obligation Certificates—Accreditation);
3. Successful applicants will be awarded an accreditation number;
4. Register for a FIT with your supplier, and provide them with your accreditation number so that they can verify your eligibility.

Steps 5 and 6 are as above.

While Ofgem is responsible for establishing and maintaining the central FITs register, suppliers manage the registration process—they will be your point of contact.

Microgeneration Certification Scheme (MCS)
The MCS is currently the only formalised industry standard in the UK based on European and international standards for microgeneration projects. MCS is a BS EN 45011 Certification scheme covering Renewable Energy products (wind and PV up to 50 kW (electrical), solar thermal, biomass and heat pumps up to 45 kW (thermal), Micro CHP and hydropower) and Renewable Energy installation companies.

MCS checks for the products’ performance and quality and for the installation methods and quality. MCS will increase your confidence in the Renewable Energy technology you are buying and in the company installing it. The MCS is linked with FITs accreditation for Renewable Energy generation < 50 kW electrical capacity. For more information please refer to the MCS website: www.microgenerationcertification.org
Eligibility and Accreditation

ROO-FIT accreditation arrangements:
Anaerobic Digestion and hydro installations of any size are accredited by the Renewables Obligation (RO) Order Feed-in Tariff (“ROO-FIT”) process, rather than the MCS accreditation process (“MCS-FIT”). Wind and solar installations greater than 50 kW are also accredited in this way. The ROO-FIT accreditation process is run by Ofgem (rather than the generation installer / supplier), via Ofgem’s Renewable and CHP register. There is more information about it on Ofgem’s website:

http://www.ofgem.gov.uk/Sustainability/Environment/fits(Apply/Pages/Apply.aspx

Preliminary accreditation has been introduced for installations registering under the ROO-FIT process. This allows the tariff level to be fixed for a period of time, from the time of your preliminary accreditation application. For more information on the ROO-FIT process, refer to the Ofgem website (link above).

Micro CHP Pilot: The Micro CHP pilot will support up to 30,000 installations with a review to start when the 12,000th installation has occurred. To qualify the CHP unit must have an electrical capacity no greater than 2 kW.

Where to Find More Information

For more guidance and the most up-to-date information on Feed-in Tariffs, please see the following organisations’ websites:

- Energy Saving Trust — Initial port of call for information
 www.energysavingtrust.org.uk/Generate-your-own-energy/Financial-incentives/Feed-In-Tariffs-scheme-FITs

- Carbon Trust — Initial port of call for information for businesses
 www.carbontrust.com

- Department of Energy and Climate Change (DECC) — Policy setting
 www.decc.gov.uk/en/content/cms/meeting_energy/renewable_ener/reedin_tariff/feedin_tariff.aspx

- Ofgem—FIT administrator
 www.ofgem.gov.uk/Sustainability/Environment/fits/Pages/fits.aspx

Note that your electricity supplier is your point of contact for the FIT scheme.
Glossary of Terms

Balancing and Settlement Code (BSC): The Code which determines the rules governing the Balancing Mechanism and settlement process for electricity trading in Great Britain. A BSC Panel has been charged with overseeing the management, modification and implementation of the BSC rules, as specified in Section B of the BSC. The Balancing and Settlement Code Company (ELEXON) supports the BSC Panel.

Balancing Mechanism: The National Electricity Transmission System Operator (NETSO) has a licence obligation to manage the Transmission System and, and needs to have an arrangement in place for the scenario where more energy is generated than consumed, or vice versa. Unchecked, this would result in system frequency falling or rising to an unacceptable degree. The balancing mechanism provides a means by which NETSO can buy or sell additional energy close to real-time to maintain energy balance, and also to deal with other operational constraints of the Transmission System.

Capacity: The capacity of a generating units is the maximum power that can be produced if the units are running normally at full power.

Climate Change Levy (CCL): Part of a range of taxation measures designed to help the UK meet its legally binding commitment to reduce greenhouse gas emissions. This levy/tax is chargeable on the industrial and commercial supply of taxable commodities for lighting, heating and power by consumers in the following sectors of business: industry, commerce, agriculture, public administration and other services.

Distributed Generation (DG): A generating unit which is connected to a distribution network rather than to the transmission system. Distributed Generation is generally smaller than generating units connected to the transmission system as the maximum operating voltage of distribution networks is 132 kV in England and Wales and 33 kV in Scotland.

Distribution Network (System): The distribution system is the network that comprises the equipment between the transmission system and the customer’s service switch. In England and Wales the distribution systems are the lines with a voltage less than or equal to 132 kV. In Scotland the distribution network is composed of lines less than 132 kV.

Distribution Network Operator (DNO): A holder of a Distribution Licence, the DNO owns, operates and maintains a Distribution network and is responsible for confirming requirements for the connection of Distributed Generation to that network.

Embedded Generation: Another term used for Distributed Generation (DG) - see above.

Energy Service Company (ESCO): A Government paper defines ESCOs as “a company that provides a customer with energy solutions” rather than simply being an electricity or gas supplier.

EU Emissions Trading System (ETS): Formerly referred to as the EU Emissions Trading Scheme, the EU Emissions Trading System (EU ETS) is one of the key policies introduced by the European Union to help meet its greenhouse gas emissions reduction target. It is a Europe-wide cap and trade scheme that started in 2005. The EU ETS covers electricity generation and the main energy-intensive industries.

Extension: It is sometimes necessary to extend the DNO’s distribution network in order to provide a connection for a new user (demand or generation customer).

Generating Unit: Any apparatus which produces electricity. Is a synonym of a generation set as defined in the Distribution Code.

Generator: A person who generates electricity under licence or exemption under the Electricity Act 1989.
Glossary of Terms

Grid Supply Point (GSP): Any point at which electricity is delivered from the National Electricity Transmission System to the DNO’s Distribution system.

Independent Distribution Network Operator (IDNO): A holder of a distribution licence, an IDNO designs, builds, owns and operates a distribution network, which is an extension to existing DNO network. They typically build network for new developments such as business parks, retail and residential areas and leisure facilities.

Low Voltage (LV): A voltage normally exceeding 50 V AC between conductors and earth or 120 V DC between conductors but not exceeding 1000 V AC or 1500 V DC between conductors or 600 V AC or 900 V DC between conductors and earth.

National Electricity Transmission System Operator (NETSO): Operates the electricity transmission system in England, Wales and Scotland (see System Operator).

National Grid Electricity Transmission (NGET): Owns the electricity transmission network in England and Wales, and operates the transmission system in England, Wales and Scotland (takes the role of the NETSO). NGET is a member of the National Grid group of companies.

Ofgem: The Office of Gas and Electricity Markets.

Reinforcement: Reinforcement work is usually required to increase the electrical capacity of those parts of the network which are affected by the introduction of new generation or demand. Other work might include upgrading the switchgear at a substation some distance from the proposed generation project, due to the increase in fault level caused by the connection of generating units.

Renewable Obligation Certificates (ROCs): A green certificate issued to an accredited generator for eligible renewable energy generated within the UK and supplied to customers within the UK by a licensed electricity supplier. ROCs are issued for each MWh of eligible renewable output generated, the amount of ROCs received depend on the technology of the generating station.

Retail Price Index (RPI): General purpose measure of inflation used in the UK.

Small Scale Embedded Generation (SSEG): A source of electrical energy and all associated interface equipment, rated up to and including 16 A per phase, single or multi phase 230/400 V AC and designed to operate in parallel with a public low voltage distribution network.

Supplier (Electricity Supplier): Electricity suppliers purchase electricity (on the market or in contracts) and sell electricity to customers (commercial, industrial and domestic).

System Operator (SO): The operator of the transmission networks, the System Operator balances supply with demand on a minute by minute basis.

Transmission Network (System): A system of lines and equipment owned by the holder of a Transmission Licence and operated by the GB SO, which interconnects Power Stations and substations. In England and Wales the transmission system is the equipment principally rated above 132 kV while in Scotland they are those principally at or above 132 kV.

Type Tested Equipment: Equipment that has been tested in accordance to ensure that it meets the requirements of EREC G83 or G59. Using type tested equipment simplifies the connection and commissioning process.
Glossary of Terms

Use of System (UoS): The use of a transmission or distribution system by a generator, supplier, customer or an interconnected party for the purposes of transporting electricity.
Standards and other documents:

Balancing and Settlement Code (BSC) is available free of charge on Elexon’s website.

Connection and Use of System Code (CUSC) is available free of charge on NGET’s website.

Engineering Recommendation G83: Recommendations for the Connection of Type Tested Small-scale Embedded Generators (Up to 16 A per Phase) in Parallel with Low-Voltage Distribution Networks—a technical document, with references to other relevant sources of detailed technical information. Some appendices are available free of charge.

Engineering Recommendation G59, relating to the connection of generating equipment to the distribution systems of licensed Distribution Network Operators—available to buy on the Energy Networks Association website.

Engineering Recommendation G81 contains a number of principles related to Distributed Generation connections. It can be found free of charge on the ENA’s website. It is called “Framework for design and planning, materials specification, installation and records low voltage housing development installations and associated new HV/LV distribution substations”. It can be found free of charge on the Energy Network Association’s website.

Electricity Safety, Quality and Continuity Regulations (ESQCR) 2002, Section 22: Statutory Instrument Number 2665, available free of charge.

Grid Code of Great Britain — available free of charge on NGET’s website.

IET Wiring Regulations (British Standard 7671) are available to buy on the IET website.

Metering Codes of Practice

Useful websites:

<table>
<thead>
<tr>
<th>Association</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association of Meter Operators</td>
<td>www.meteroperators.org.uk</td>
</tr>
<tr>
<td>British Hydropower Association</td>
<td>www.british-hydro.org</td>
</tr>
<tr>
<td>Renewable UK</td>
<td>www.bwea.com</td>
</tr>
<tr>
<td>Carbon Trust</td>
<td>www.carbontrust.com</td>
</tr>
<tr>
<td>Combined Heat and Power Association</td>
<td>www.chpa.co.uk</td>
</tr>
<tr>
<td>Distribution Connection and Use of System Agreement (DCUSA) website</td>
<td>www.dcusa.co.uk</td>
</tr>
<tr>
<td>Elexon</td>
<td>www.elexon.co.uk</td>
</tr>
<tr>
<td>Energy Networks Association</td>
<td>www.energynetworks.org</td>
</tr>
<tr>
<td>Energy Saving Trust</td>
<td>www.energsavingtrust.org.uk/Generate-your-own-energy</td>
</tr>
<tr>
<td>Energy UK</td>
<td>www.energy-uk.org.uk</td>
</tr>
<tr>
<td>Lloyds Register</td>
<td>http://www.lloydsregister.co.uk/schemes/NERS/</td>
</tr>
<tr>
<td>Microgeneration Certification Scheme</td>
<td>www.microgenerationcertification.org</td>
</tr>
<tr>
<td>National Grid Electricity Transmission (NGET)</td>
<td>www.nationalgrid.com/uk/Electricity/</td>
</tr>
<tr>
<td>Ofgem</td>
<td>www.ofgem.gov.uk</td>
</tr>
</tbody>
</table>
References

Relevant reports and guides:

A Guide: Sale of Power Opportunities for Distributed Generators; DTI (Department for Trade and Industry); Electricity Networks Strategy Group website

Electricity Trading Arrangements: A Beginner’s Guide; Elexon

Future Network Architectures; BERR (Department for Business, Enterprise and Regulatory Reform); 2007

Making ESCOs Work: Guidance and Advice on Setting Up and Delivering an ESCO; London Energy Partnership

Overview of Embedded Generation Benefits; Elexon; November 2006

Review of Distributed Generation; DTI (Department for Trade and Industry) and OFGEM; May 2007

The UK Low Carbon Transition Plan—National strategy for climate and energy; Government; 2009

The UK Renewable Energy Strategy; Government; 2009

The Tradable Value of Distributed Generation; DTI (Department for Trade and Industry); 2005
Revisions

<table>
<thead>
<tr>
<th>Version Number</th>
<th>Date</th>
<th>Details of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>June 2010</td>
<td>A major revision of the Technical Guide for the Connection of Generation to the Distribution Network, DTI document reference K/EL/00318/REP (URN 03/1631). Key changes include division of Guide into three Guides for different DG applications (G83 Stage 1, G83 Stage 2 and G59/2); revision of the style of the Guide to “plain English”; and inclusion of chapters on the role of Distributed Generation, Technical and Commercial Interfaces and Selling Electricity (FITs and ROCs).</td>
</tr>
</tbody>
</table>
| 2 | October 2010 | Minor edits to the Guides:
- Addressing issues raised in HSE response to the consultation direction (8 July 2010);
- Changes to timescales associated with a Section 16 connection applications arising from DNO advice;
- Alteration to the text on Assessment and Design Fees and reference to the Statement of Methodology and Charges for Connection; and
- Inclusion of a note about dealing with disputes. |
| 3 | November 2010 | Minor edits to the Guides to reflect the changes in ownership of networks from EDF Energy to UK Power Networks. |
| 3.1 | April 2011 | Edits to the Guides to reflect the issuance of a Guidance Note from the Distribution Code Review Panel on:
- the application of G83/1-1 to small scale wind, and other small scale generation technologies that do not have a type testing annex in G83/1-1; and
- a relaxation of G59/2 to small scale generating equipment greater than 16 Amps per phase and up to 50 kW 3-phase (17 kW single-phase) provided that certain conditions are met.
Edits to clarify the applicability of G83/1-1 Stage 2 to multiple generating units within different customer sites and in a close geographic region. |
| 3.2 | June 2011 | Minor edits to the Guides to reflect the changes in ownership of networks from E.On Central Networks to Western Power Distribution. Update of Feed-in Tariff and Renewables Obligation sections to reflect recent changes, e.g. tariff increases and scheme review details. |
Revisions

<table>
<thead>
<tr>
<th>Version Number</th>
<th>Date</th>
<th>Details of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>November 2011</td>
<td>Minor edits to the Guides to reflect rebranding of C E Electric to Northern Powergrid.</td>
</tr>
<tr>
<td>3.4</td>
<td>January 2013</td>
<td>Edits to the Guides to reflect updates to G83, with the publication of Engineering Recommendation G83/2, and outcomes from the Feed-in Tariff reviews (Phase 1, Phase 2A, Phase 2B).</td>
</tr>
</tbody>
</table>
| 4.0 | March 2014 | Considerable revisions and updates throughout the Guides, to reflect changes in the Distributed Generation landscape since the Guides were revised in 2010, as well as feedback received from stakeholders during a workshop. Both content and structural changes have been made, including the introduction of:
 - A Guide for G59 generation at 50kW or less; and
 - A “summary” version of each Guide, containing the minimum, essential information from each chapter. |