
EmonLib Maths

Real Power

The formula presently used is:

average power=
k
n
∑
0

n−1

[(lastFilteredV +PHASECAL∗(filteredV−lastFilteredV))∗filteredI]

where k is a calibration constant depending on the voltage and current calibration
constants, the ADC reference voltage and the ADC resolution. n is the sample count.

This can be expanded to

average power=
k
n
∑

0

n−1

[((lastFilteredV +PHASECAL∗filteredV−PHASECAL∗lastFilteredV))∗filteredI]

=
k
n
∑
0

n−1

[lastFilteredV∗filteredI+PHASECAL∗filteredV∗filteredI−PHASECAL∗lastFilteredV∗filteredI]

=
k
n ∑

0

n−1

[(1−PHASECAL)∗lastFilteredV∗filteredI+PHASECAL∗filteredV∗filteredI]

The summation can now be split into two:

average power=
k
n

(∑
0

n−1

[(1−PHASECAL)∗lastFilteredV∗filteredI]+∑
0

n−1

[PHASECAL∗filteredV∗filteredI])

Because PHASECAL is a constant, the constant terms can move out of the sum:

average power=
k
n
.(PHASECAL.∑

0

n−1

[filteredV×filteredI]−(PHASECAL– 1).∑
0

n−1

[lastFilteredV ×filteredI])

The implication of this is that by transmitting the two sums to emonHub and performing the
final stage of the maths there, it is possible to perform phase calibration inside emonHub.
Writing k = k1 × k2, where k1 is dependent on the ADC reference voltage and the ADC
resolution, and k2 is dependent on the calibration constants, it is possible and desirable to
apply n and k1 before the sums are transmitted, as these values are already known to the
ATMega front-end processor and need not be known to emonHub, and k2 afterwards as
that is primarily dependent on the installed sensors and gives the user easy access to
calibrate.

Viz:

A=
k 1

n
.∑

0

n−1

[filteredV×filteredI]

B=
k1

n
.∑

0

n−1

[lastFilteredV×filteredI]

 where k1=(ADC fullscale voltage/ ADC counts)2

average power=k2 .(A×PHASECAL−B×(PHASECAL– 1))

where k2=Ical×Vcal /scalefactor

As it stands, the linear interpolation/extrapolation generates an amplitude change. This
can be avoided, for a pure sine wave, by modifying the coefficients:

average power=k2 .(A×X+B×Y)

where
 Δ=samplinginterval
 Φ=phase error differencebetweentwo transformers
 Y=sinΦ /sin Δ
 X=cosΦ−Y×cosΔ

Unfortunately, a wave that is not a perfect sinusoid will still be distorted, but to a lesser
extent.

Transmitting the values A & B

As it stands, for the emonTx

k2≈
1.0

average power

at maximum power. This follows because the voltage and current inputs of the emonTx are
a little less than and a little more than 1 V respectively at nominal voltage and maximum
current.
These values could be transmitted as floating point variables inside the emonPi, but to do
the same with the emonTx would require a significantly longer message when using the
JeeLib library and the RF modules.

Therefore, it is proposed to multiply A, B and the corresponding rms voltage & current
values by a constant, before transmitting them as signed integers as is customary. A
suitable constant is 18432 (0x4800, lending itself to easy integer maths if necessary),
which should be adequate for a 100% amplitude sinusoidal current wave at the input of a 5
V Arduino, (5 V p-p = 1.768 V rms, times 18432 = 32583)
and for the maximum UK voltage with the standard adapter (0.862 V rms at the input,
15888 counts)
and is also clearly satisfactory for real power at 1.768 V × 0.944 V = 1.669 V (30763
counts).
This will make the value of constant k2

k2 = Ical × Vcal ÷ 18432

Rms Voltage and Current.

Similarly, the voltage and current calibration constants respectively can be separated and
applied in emonHub, while the sample count, ADC reference voltage and the ADC
resolution are applied in the ATMega front-end processor.
In these cases, the appropriate scale factors respectively for emonHub will be

k2 = Vcal ÷ 18432
k2 = Ical ÷ 18432

The combined result of moving the ‘sensor-dependent’ calibration constants into emonHub
is to remove all need for calibration from the emonTx, and from the ‘emon’ part of the
emonPi, hence removing the need for a programmer, and removing the need to recompile
and reload the sketch for the Atmel 328P.

Removal of ADC input bias voltage offset.

Initially, the offset arising from the input bias voltage was removed by a high pass filter.
This, while effective, could not be satisfactorily initialised, with the consequence that a
large spike would appear in the output as the filter settled, requiring the output to be
inhibited for the first few sampling periods. This filter was replaced by straight arithmetic
subtraction of the offset, the actual offset value being obtained by a low pass filter, which
could be initialised to the expected value. However, this still allowed a small degree of
ripple to enter the readings.

However, it is not necessary to remove the offset immediately. If it can be assumed that
the offset remains stable over the sampling period, it can be removed after sampling is
complete. To do this in a practical manner, the nominal offset is removed by subtracting
half the ADC count (simply to reduce the size of the numbers) and the average input value
is obtained by totalling the samples and dividing by the sample count. The rms of the
combined signal plus the residual offset is obtained in the usual way, by multiplying each
sample by itself and accumulating the total. The true rms average is then obtained from

[rms of signal+offset]=√(signal2+offset2).

This calculation is used for voltage and current. For the real power calculation, it is only
necessary to subtract the product of voltage offset and current offset (the ‘offset power’)
from the average power (the average of the instantaneous powers).

Additional Notes.

Default values for calcVI (number of crossings & timeout) and calcIrms (number of
samples) allow these methods to be called without parameters if desired.
Should it be desired to calibrate the ADC supply measurement by the readVcc method
(normally this is required and used only when a tightly regulated supply is unavailable), a
‘setter’ setRef(unsigned long _vCal) is provided. The default is the nominal value
of 1126400.

The real UK voltage has been recorded with a crest factor (ratio peak/rms) = 1.38
The expected value is 1.414

Acknowledgements.

A major part of this work arises from suggestions made by @ursi (Andries) and @mafheldt
(Mike Afheldt)
at https://community.openenergymonitor.org/t/emonlib-inaccurate-power-factor/3790 and

https://community.openenergymonitor.org/u/ursi
https://community.openenergymonitor.org/t/emonlib-inaccurate-power-factor/3790
https://community.openenergymonitor.org/u/mafheldt
https://community.openenergymonitor.org/u/mafheldt

https://community.openenergymonitor.org/t/rms-calculations-in-emonlib-and-learn-
documentation/3749/3

https://community.openenergymonitor.org/t/rms-calculations-in-emonlib-and-learn-documentation/3749/3
https://community.openenergymonitor.org/t/rms-calculations-in-emonlib-and-learn-documentation/3749/3

