

Data Push Connector API
510.907.0400

9AM-5PM Pacific Time
support@luciddg.com

Data Transmission Standards
In the building intelligence field, two standards have emerged as ideal methods of automating
machine to machine data communications from sensors, meters, gateways, databases, PCs,
servers, and other mobile and industrial equipment to BuildingOS.

HTTP-POST (preferred)
This is our preferred method for transmitting data from modern applications that support a
REST-based framework. Please note the following:

● Files pushed from your application to BuildingOS must be an HTTP POST request
● All requests must pass https://rest.buildingos.com/ as the URL (note the trailing “/” is

significant)
● Only a POST is accepted. If a GET is sent the response will include a JSON error message

and a status code of 409.

 Copyright © 2015 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 1

 510.907.0400

Pacific Time
support@luciddg.com

● Only one file can be sent at a time. If more than one file is sent, the request will be denied
and an error message will be returned with a status code of 409.

● Files can be of type .csv, .xml, or .json.
● JSON, XML, and CSV files must be passed as ‘Form-data’, with the appropriate

Content-Type (application/json for json, text/plain for xml & csv)
● Sample Visual Basic example for transmitting files from a Windows directory available on

request
FTP (legacy)
This method supports older applications that natively support file delivery via sFTP only. Please
note the following:

● Standard FTP is not supported due to security concerns, you must use sFTP
● FTP over SSL (FTPS) is not supported at this time
● A URL, username, and password, and/or private key will be provided that is unique to each

device or PC sending files.
● Files must be placed at the root of the FTP account - Do not create any subfolders or your

files will not be transmitted to our cloud servers
● The FTP server is effectively an FTP -> HTTP-POST converter - all successfully transferred

files are immediately sent as HTTP-POST request to BuildingOS and removed from the FTP
root directory

● Whenever possible, we recommend sending files directly as an HTTP-POST request to
remove this extra hop in the data transmission path for enhanced stability and on-going
reliability

Application authentication & URI schema
The BuildingOS Push Connector does not require authentication. Devices and systems identify
themselves through a unique URI specified in the datasource element of the HTTP request.

The datasource value should be a URI composed of the following elements:

<application>://<integration>/<gateway>

● application – always bos, which is shorthand for BuildingOS
● integration - a string of numbers, letters, or dashes (-) that serves as a unique identifier of

a class of devices or gateways (i.e. Obvius-AcquiSuite). This is linked to the Tile displayed
under the Integrations page in BuildingOS.

● gateway – a string of numbers, letters or underscores (_) that serves as a unique identifier
of the device, building or other object in the source system. We recommend using a serial

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 2

 510.907.0400

Pacific Time
support@luciddg.com

number, MAC Address, UUID, or other series of alphanumeric characters easily found on a
device or invoice for future support.

The following are examples of valid data source URIs

● bos://buildingos-csv/carnegie_library
● bos://buildingos-json/001EC60003DD
● bos://foobar-industries/123456_abcd
● bos://data-exporter-9000/site3125A_001

When developing your application, Lucid Integration or Solutions Engineers can assist with vetting
URIs and ensuring compatibility with our system. All URIs must be unique within our system to
ensure proper data mapping.

Meter Catalog
A meter catalog enumerates the metering points which will be reported to BuildingOS, and
supplying a meter catalog enables automated discovery and quick meter commissioning in
BuildingOS. Though optional, it is highly recommended that you implement the catalog as it
significantly streamlines the setup process.

Once a catalog has been created following the first push of data, a user must log in to BuildingOS
and connect the points in the catalog to BuildingOS so the system knows how to interpret the
data that is sent, how to categorize it and what facility it is associated with.

Real-time Data Formats

JSON Schema

The JSON schema is composed of two parts, which may be passed in unison or at different
instances, depending on required implementation and/or device interaction:

A meter catalog is composed of two required elements and up to three optional elements.

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 3

 510.907.0400

Pacific Time
support@luciddg.com

● meterId [required] – A unique string specifying the data point for which a value is being
reported (Example: Electricity_Meter_1). The uniqueness of this string is only relative to the
gateway - the same ID can be used again for each gateway.

● meterName [required] – A human readable string that the BuildingOS user will understand
to aid in the commission of this point in BuildingOS

● meterUnits [optional] – Industry standard codes that represent the meter/points unit of
measure (Example: kWh) - this could be very helpful during commissioning and is
recommended.

● meterLocation [optional] – A string. On occasion the meterId is not sufficient to uniquely
identify a point and in these cases a meterLocation can be used to provide an additional
attribute for identification. If the meterLocation is used with the catalog, it must be used
with the readings as well.

● meterDescription [optional] – A human readable string that can be used to add additional
information for the user to aid in commissioning in BuildingOS.

● meterTags [optional] – A comma separated list of strings that enable grouping of
meters/points (repeat

An energy reading is comprised of three required values plus two optional values:

● timestamp [required] - The time of the reading, expressed as an ISO8601-format timestamp
(Example: 2013-01-17T09:23:00Z).

○ Please note: Timestamps are assumed to represent the beginning of an interval. For
example, a timestamp of 1:30 in quarter-hour data represents the interval from 1:30
to 1:44.

● meterId [required] - A unique string specifying the data point for which a value is being
reported. (Example: Electricity_Meter_1). The uniqueness of this string is only relative
to the gateway - the same ID can be used again for each gateway.

● value [required] - The floating-point value associated with the reading (Example: 21445.543)
● meterLocation [optional] – A string. On occasion the meterId is not sufficient to uniquely

identify a point, thus the meterLocation can be used to provide an additional attribute for
identification.

● buildingLocalTime [optional] - A boolean true/false value. true indicates the timestamp
reflects your local time zone; false indicates that the timestamp reflects UTC. This value
defaults to false.

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 4

 510.907.0400

Pacific Time
support@luciddg.com

CSV Schema

BuildingOS can generate Meter Catalogs from two types of CSV schemas natively, to reflect the
two most common formats found with existing Building Automation exports.

● Header-based

○ This format is such that the first set of values in each .csv row identify the timestamp,
which each subsequent value representing data for the corresponding timestamp.

○ The first row contains the unique identifier (VendorMeterID) that serves to identify
each subsequent row of values

○ Timestamps must be ordered from oldest to newest
○ Example:

Timestamp {meterId_1} {meterId_2} {meterId_3} {meterId_4}

{oldest_timestamp} {value} {value} {value} {value}

{newest_timestamp} {value} {value} {value} {value}

● Tuple-based (no headers)

○ This format is such that each row contains one or two identifiers, with no headers
○ Timestamps must be ordered from oldest to newest
○ Example:

{meterId_1} {oldest_timestamp} {value} {optional_meterLocation_1}

{meterId_2} {oldest_timestamp} {value} {optional_meterLocation_1}

{meterId_3} {oldest_timestamp} {value} {optional_meterLocation_1}

{meterId_1} {newest_timestamp} {value} {optional_meterLocation_1}

{meterId_2} {newest_timestamp} {value} {optional_meterLocation_1}

{meterId_3} {newest_timestamp} {value} {optional_meterLocation_1}

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 5

 510.907.0400

Pacific Time
support@luciddg.com

Bill Data Formats

JSON Schema
The JSON file top level elements are constructed as follows:
{
 "datasource":"bos://buildingos-bills/<org-url-element>",
 "constructCatalog":true | false,
 "constructReadings":true | false,
 "bills":[],
 "meterCatalog":[],
 "readings":[]
}

○ datasource [required] – the BuildingOS URI, described above in “How does my application
authenticate?”. The vendor name is agreed up between Lucid and the partner. The
organization is known by Lucid (the urlElement of the organization) and is relayed to the
vendor when the account is set up. This element is required if not located within the JSON,
an error message will be returned with a status code of 409.

○ constructCatalog [optional] – If true this tells BuildingOS to construct a meter catalog to
enable BuildingOS ConnectNow functionality. If false, the partner must send the separate
meterCatalog element (see below) for the BuildingOS user to be able to leverage Connect
Now functionality. If passing false, the attribute must be available whenever sending JSON
to ensure consistency. This defaults to true

○ constructReadings [optional] – If true this tells BuildingOS to disaggregate and construct
meter readings using BuildingOS calendarization of dates and time from the meter readings
in the bill. If false, the partner must send the separate readings element (see below) for the
BuildingOS user to be able utilize the data within BuildingOS. If passing false, the attribute
must be available whenever sending JSON to ensure consistency. This defaults to true.
Since the bills element is not required no error is returned if the bills element is not present.

Bills element

The bills element is a list of associative arrays (dictionaries/maps) corresponding to monthly billing
items. This element is not required and can be sent separately. The attributes startDate, endDate,
meterId, consumption and cost are required. If these attributes are not present the system will
return an error message with a status code of 409. The bills element is structured as follows:

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 6

 510.907.0400

Pacific Time
support@luciddg.com

 "bills":[
 {
 "startDate":"12/09/2013",
 "endDate":"12/16/2013",
 "accountNumber":"123456-789",
 "meterId":"dummy_lnp_234567",
 "billId":"dummy_lnp_123",
 "consumptionUnit":"kWh",
 "consumption":149607,
 "demandUnit":"kW",
 "demand":392,
 "costUnit":"USD",
 "cost":17844.13,
 "consumptionCost":944.39,
 "demandCost": 844.04,
 "serviceCharges": 74.89,
 "taxes": 56.13,
 "otherCharges": 348.11

 }
]

○ startDate [required] – the en_US formatted date the billing period began.
○ endDate [required] – the en_US formatted date the billing period ended.
○ accountNumber [optional]– the account number is a string value.
○ meterId [required] – The unique vendor identifier for this meter. This string value only needs

to be unique to the vendor.
○ billId [optional] – The unique bill identifier for this meter. This field can be used to push

edits or changes to a specific bill.
○ consumptionUnit [optional] – the consumption unit is a string that defines the standard unit

for the source systems unit of measure for consumption. The default is kWh.
○ consumption [required] – an integer or float representation of the consumption for this

period.
○ demandUnit [optional] – the demand unit is a string that defines the standard unit for the

source systems unit of measure for demand. The default is kW.
○ demand [optional] – an integer or float representation of the demand for this period.
○ costUnit [optional] – The three letter ISO 4217 currency code. This defaults to USD.
○ cost [required] – The float value (without locale formatting) of the cost.

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 7

 510.907.0400

Pacific Time
support@luciddg.com

○ consumptionCost [optional] – The float value (without locale formatting) of the consumption
cost.

○ demandCost [optional] – The float value (without locale formatting) of the demand cost.
○ serviceCharges [optional] – The float value (without locale formatting) of the cost of service

charges.
○ taxes [optional] – The float value (without locale formatting) of the cost of taxes.
○ otherCharges [optional] – The float value (without locale formatting) of the cost adjustments,

credits, and any other charges.

Meter Catalog element

The meterCatalog element is a list of associative arrays (dictionaries, maps) that are used by
BuildingOS to define meters. This element can be sent to BuildingOS separately but will not be
processed unless constructCatalog is false in the main elements of the JSON (see above). This is
used when greater detail is desired when defining the meters for the readings related to bills. This
element is not required and can be sent separately. The following is an example of the
meterCatalog element:

"meterCatalog": [
 {
 "meterId": "dummy_lnp_123456",
 "meterName": "CC4 Sub Main T",
 "meterLocation": "westend",
 "meterUnits": "kWh",
 "meterDescription": "West Mechanical Room",
 }
]

A meter catalog is composed of two required elements and up to three optional elements.

○ meterId [required] – A unique string specifying the data point for which a value is being
reported (Example: Electricity_Meter_1). The uniqueness of this string is only relative
to the gateway - the same ID can be used again for each gateway.

○ meterName [required] – A human readable string that the BuildingOS user will understand
to aid in the commission of this point in BuildingOS.

○ meterLocation [optional] – A string. On occasion the meterId is not sufficient to uniquely
identify a point and in these cases a meterLocation can be used to provide an additional
attribute for identification. If the meterLocation is used with the catalog, it must be used
with the readings as well.

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 8

 510.907.0400

Pacific Time
support@luciddg.com

○ meterUnits [optional] – Industry standard codes that represent the meter/points unit of
measure (Example: kWh) - this could be very helpful during commissioning and is
recommended. This defaults to kWh.

○ meterDescription [optional] – A human readable string that can be used to add additional
information for the user to aid in commissioning in BuildingOS.

Readings element [optional]
The readings element is only sent when a vendor has a different calendarization algorithm for the
disaggregation of the bills than is available in BuildingOS. The readings element are associated
with the meters and will not be processed unless constructReadings is false. This element is not
required and can be sent separately. The following is an example of the readings element:

"readings": [
 {

 "meterId": “dummy_lnp_123456",
 "billId": “dummy_lnp_123",

 "meterLocation": "westside",
 "buidlingLocalTime": true,
 "timestamp": "2013-12-11T23:12:00",
 "value": 123456.78
 }
]

The meterId, timestamp and value are required in all readings. Readings will not be processed if all
three are not available. If meterId is not available an error message will be returned with a status
code 409.

○ meterId [required] - The meterId is a string that the source system maintains to uniquely
identify a meter referenced in the bills. This must the same value as the meterId in the bill
element (see above).

○ billId [optional] - The billId is a string that the source system maintains to uniquely identify a
bill referenced to a meter. This must the same value as the billId in the bill element (see
above). This field can be used to push edits or changes to a specific bill.

○ meterLocation [optional] – The meterLocation is used when processing data within
BuildingOS. This should only be used when a catalog was created with the meterLocation
for a vendor that will not construct readings from the bills element, but will process
readings using what is defined here. This is an additional attribute that is available for
vendors to ensure the uniqueness of a given meter. Its type is string.

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 9

 510.907.0400

Pacific Time
support@luciddg.com

○ buildingLocalTime [optional] – If true the timestamp is assumed to be in the time zone of the
associated building and will be converted to UTC for processing. The default is false. All
timestamps are assumed to be in UTC.

○ timestamp [required] - The ISO 8601 formatted date/time as a string. There is no need to
designate timezone with the time stamp. The timezone is relative to the building that the
meter is associated with.

○ value [required] – The integer or float value for this reading.

CSV Schema
The CSV schema mirrors our manual bill upload format. Note the following two rows are a
descriptive example, the first provides meta-data on the type of values expected, and the second
is a sample reading for Account ‘12345678’ and Service/MeterID ‘7654321’

Start
Date

End
Date

Account
Number

ServiceId Consum
ption
Unit

Consum
ption

Demand
Unit

Peak
Demand

Total
Cost
($)

Cons
umpti
on
Cost
($)

Demand
Cost ($)

Taxes
($)

Service
Charges
($)

Supply
Charges
($)

MM/DD/
YY

MM/D
D/YY

Alphanu
meric

Alphanu
meric

(Energy) (Value) (Power) (Value) Omit
$

Omit
$

Omit $ Omit $ Omit $ Omit $

1/1/15 2/16/1
5

1234567
8

7654321 kWh 1,234 kW 8.1 1,234
.56

765.4
3

432.10 37.03 0.00 0.00

Server Response
BuildingOS will respond to an HTTP-POST transmission with one of the following codes:

● In response to a valid HTTP POST, BuildingOS will return 200 OK (in addition, JSON files
will return a response indicating how many catalog entries and/or readings created)

● A 400 error will be returned if:
○ the ‘file’ and ‘datasource’ keys are missing in the Request (or JSON file)
○ the Content-Type attributes are specified incorrectly
○ the system is unable to determine the proper gateway type
○ no or invalid data is passed for the ‘file’ key.

● A 500 error will be returned if:
○ the wrong URL is passed (i.e. api.buildingos.com instead of rest.buildingos.com)
○ the system is down (please contact Lucid support)

● Please contact Lucid support if any other status codes are returned

 Copyright © 2016 Lucid Design Group, Inc. All rights reserved. This document is for private customer use only.

Version 03.08.2017 - Page 10

